TY - JOUR
T1 - Impact of High-Power Short-Duration Radiofrequency Ablation on Esophageal Temperature Dynamic
AU - Yavin, Hagai D.
AU - Bubar, Zachary P.
AU - Higuchi, Koji
AU - Sroubek, Jakub
AU - Kanj, Mohamed
AU - Cantillon, Daniel
AU - Saliba, Walid I.
AU - Tarakji, Khaldoun G.
AU - Hussein, Ayman A.
AU - Wazni, Oussama
AU - Anter, Elad
N1 - Publisher Copyright:
© 2021 Lippincott Williams and Wilkins. All rights reserved.
PY - 2021/11/1
Y1 - 2021/11/1
N2 - Background: High-power short-duration (HP-SD) radiofrequency ablation (RFA) has been proposed as a method for producing rapid and effective lesions for pulmonary vein isolation. The underlying hypothesis assumes an increased resistive heating phase and decreased conductive heating phase, potentially reducing the risk for esophageal thermal injury. The objective of this study was to compare the esophageal temperature dynamic profile between HP-SD and moderate-power moderate-duration (MP-MD) RFA ablation strategies. Methods: In patients undergoing pulmonary vein isolation, RFA juxtaposed to the esophagus was delivered in an alternate sequence of HP-SD (50 W, 8-10 s) and MP-MD (25 W, 15-20 s) between adjacent applications (distance, ≤4 mm). Esophageal temperature was recorded using a multisensor probe (CIRCA S-CATH). Temperature data included magnitude of temperature rise, maximal temperature, time to maximal temperature, and time return to baseline. In swine, a similar experimental design compared the effect of HP-SD and MP-MD on patterns of esophageal injury. Results: In 20 patients (68.9±5.8 years old; 60% persistent atrial fibrillation), 55 paired HP-SD and MP-MD applications were analyzed. The esophageal temperature dynamic profile was similar between HP-SD and MP-MD ablation strategies. Specifically, the magnitude of temperature rise (2.1 °C [1.4-3] versus 2.0 °C [1.5-3]; P=0.22), maximal temperature (38.4 °C [37.8-39.3] versus 38.5 °C [37.9-39.4]; P=0.17), time to maximal temperature (24.9±7.5 versus 26.3±6.8 s; P=0.1), and time of temperature to return to baseline (110±23.2 versus 111±25.1 s; P=0.86) were similar between HP-SD and MP-MD ablation strategies. In 6 swine, esophageal injury was qualitatively similar between HP-SD and MP-MD strategies. Conclusions: Esophageal temperature dynamics are similar between HP-SD and MP-MD RFA strategies and result in comparable esophageal tissue injury. Therefore, when using a HP-SD RFA strategy, the shorter application duration should not prompt shorter intervals between applications.
AB - Background: High-power short-duration (HP-SD) radiofrequency ablation (RFA) has been proposed as a method for producing rapid and effective lesions for pulmonary vein isolation. The underlying hypothesis assumes an increased resistive heating phase and decreased conductive heating phase, potentially reducing the risk for esophageal thermal injury. The objective of this study was to compare the esophageal temperature dynamic profile between HP-SD and moderate-power moderate-duration (MP-MD) RFA ablation strategies. Methods: In patients undergoing pulmonary vein isolation, RFA juxtaposed to the esophagus was delivered in an alternate sequence of HP-SD (50 W, 8-10 s) and MP-MD (25 W, 15-20 s) between adjacent applications (distance, ≤4 mm). Esophageal temperature was recorded using a multisensor probe (CIRCA S-CATH). Temperature data included magnitude of temperature rise, maximal temperature, time to maximal temperature, and time return to baseline. In swine, a similar experimental design compared the effect of HP-SD and MP-MD on patterns of esophageal injury. Results: In 20 patients (68.9±5.8 years old; 60% persistent atrial fibrillation), 55 paired HP-SD and MP-MD applications were analyzed. The esophageal temperature dynamic profile was similar between HP-SD and MP-MD ablation strategies. Specifically, the magnitude of temperature rise (2.1 °C [1.4-3] versus 2.0 °C [1.5-3]; P=0.22), maximal temperature (38.4 °C [37.8-39.3] versus 38.5 °C [37.9-39.4]; P=0.17), time to maximal temperature (24.9±7.5 versus 26.3±6.8 s; P=0.1), and time of temperature to return to baseline (110±23.2 versus 111±25.1 s; P=0.86) were similar between HP-SD and MP-MD ablation strategies. In 6 swine, esophageal injury was qualitatively similar between HP-SD and MP-MD strategies. Conclusions: Esophageal temperature dynamics are similar between HP-SD and MP-MD RFA strategies and result in comparable esophageal tissue injury. Therefore, when using a HP-SD RFA strategy, the shorter application duration should not prompt shorter intervals between applications.
KW - atrial fibrillation
KW - esophageal fistula
KW - esophagus
KW - radiofreqency ablation
UR - https://www.scopus.com/pages/publications/85121991113
U2 - 10.1161/CIRCEP.121.010205
DO - 10.1161/CIRCEP.121.010205
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 34706551
AN - SCOPUS:85121991113
SN - 1941-3149
VL - 14
SP - E010205
JO - Circulation: Arrhythmia and Electrophysiology
JF - Circulation: Arrhythmia and Electrophysiology
IS - 11
ER -