Impact of aerosol layering, complex aerosol mixing, and cloud coverage on high-resolution MAIAC aerosol optical depth measurements: Fusion of lidar, AERONET, satellite, and ground-based measurements

Irina Rogozovsky, Albert Ansmann, Dietrich Althausen, Birgit Heese, Ronny Engelmann, Julian Hofer, Holger Baars, Yoav Schechner, Alexei Lyapustin, Alexandra Chudnovsky*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Knowledge of the vertical distribution and layering of aerosols and identification of the corresponding aerosol sources are needed to improve our understanding of the spatial and temporal variability of aerosol pollution. To achieve this goal, we combined both passive and active remote-sensing techniques to provide a 3D view of local aerosol levels and regional to long-range pollution transport. We studied aerosol optical depth (AOD) data from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm at 1-km spatial resolution along with active multiwavelength polarization lidar observations of vertical aerosol profiles in Haifa, Israel, Aerosol Robotic Network (AERONET) sun photometer observations at the lidar site, and local-network observations of aerosol concentrations (PM2.5). This comprehensive dataset enabled analyzing the performance of the MAIAC AOD retrieval in cases of complex aerosol layering and mixing states which are typical of the Eastern Mediterranean. While satellite-derived and ground-based AOD measurements generally showed good agreement, 35 out of 100 measurements showed low correspondence. Analysis of those cases revealed that overestimation of AOD was mostly related to cloud-contaminated pixels and aerosol water-uptake effects in moist, cloud-free air at cloud level. Furthermore, AOD over- and underestimations were related to the presence of complex aerosol mixture and layering conditions, especially when dust was mixed with aged anthropogenic aerosol pollution and marine aerosols with lofted anthropogenic pollution. In these cases 50–70% of measurements were outside of the expected error limit. Perhaps these conditions are not considered in the MAIAC retrieval. Finally, we investigated the link between AOD spatial variability and the MAIAC AOD bias, and performed a cluster analysis corroborating the strong impact of cloud contamination on MAIAC AOD quality. Our observation-based results raise the importance of carefully analyzing the uncertainties in satellite AOD measurements that are used as an important input variable in numerous health-related exposure studies and climate models.

Original languageEnglish
Article number118163
JournalAtmospheric Environment
Volume247
DOIs
StatePublished - 15 Feb 2021

Keywords

  • AOD spatial Variance
  • Aerosol optical depth (AOD)
  • Cluster analyses
  • Multi-angle implementation of atmospheric correction (MAIAC)
  • Polly-lidar

Fingerprint

Dive into the research topics of 'Impact of aerosol layering, complex aerosol mixing, and cloud coverage on high-resolution MAIAC aerosol optical depth measurements: Fusion of lidar, AERONET, satellite, and ground-based measurements'. Together they form a unique fingerprint.

Cite this