TY - JOUR
T1 - Image inpainting using directional wavelet packets originating from polynomial splines
AU - Averbuch, Amir
AU - Neittaanmäki, Pekka
AU - Zheludev, Valery
AU - Salhov, Moshe
AU - Hauser, Jonathan
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/9
Y1 - 2021/9
N2 - The paper presents a new algorithm for the image inpainting problem. The algorithm uses a recently designed versatile library of quasi-analytic complex-valued wavelet packets (qWPs) which originate from polynomial splines of arbitrary orders. Tensor products of 1D qWPs provide a diversity of 2D qWPs oriented in multiple directions. For example, a set of the fourth-level qWPs comprises 62 different directions. The properties of these qWPs such as refined frequency resolution, directionality of waveforms with unlimited number of orientations, (anti-)symmetry of waveforms and windowed oscillating structure of waveforms with a variety of frequencies, make them efficient in image processing applications, in particular, in dealing with the inpainting problem addressed in the paper. The obtained results for this problem are quite competitive with the best state-of-the-art algorithms. The inpainting is implemented by an iterative scheme, which expands the Split Bregman Iteration (SBI) procedure by supplying it with an adaptive variable soft thresholding based on the Bivariate Shrinkage algorithm. In the inpainting experiments, performance comparison between the qWP-based methods and the state-of-the-art algorithms is presented.
AB - The paper presents a new algorithm for the image inpainting problem. The algorithm uses a recently designed versatile library of quasi-analytic complex-valued wavelet packets (qWPs) which originate from polynomial splines of arbitrary orders. Tensor products of 1D qWPs provide a diversity of 2D qWPs oriented in multiple directions. For example, a set of the fourth-level qWPs comprises 62 different directions. The properties of these qWPs such as refined frequency resolution, directionality of waveforms with unlimited number of orientations, (anti-)symmetry of waveforms and windowed oscillating structure of waveforms with a variety of frequencies, make them efficient in image processing applications, in particular, in dealing with the inpainting problem addressed in the paper. The obtained results for this problem are quite competitive with the best state-of-the-art algorithms. The inpainting is implemented by an iterative scheme, which expands the Split Bregman Iteration (SBI) procedure by supplying it with an adaptive variable soft thresholding based on the Bivariate Shrinkage algorithm. In the inpainting experiments, performance comparison between the qWP-based methods and the state-of-the-art algorithms is presented.
UR - http://www.scopus.com/inward/record.url?scp=85108723615&partnerID=8YFLogxK
U2 - 10.1016/j.image.2021.116334
DO - 10.1016/j.image.2021.116334
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85108723615
SN - 0923-5965
VL - 97
JO - Signal Processing: Image Communication
JF - Signal Processing: Image Communication
M1 - 116334
ER -