Image deblurring in the presence of impulsive noise

Leah Bar*, Nahum Kiryati, Nir Sochen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

112 Scopus citations


Consider the problem of image deblurring in the presence of impulsive noise. Standard image deconvolution methods rely on the Gaussian noise model and do not perform well with impulsive noise. The main challenge is to deblur the image, recover its discontinuities and at the same time remove the impulse noise. Median-based approaches are inadequate, because at high noise levels they induce nonlinear distortion that hampers the deblurring process. Distinguishing outliers from edge elements is difficult in current gradient-based edge-preserving restoration methods. The suggested approach integrates and extends the robust statistics, line process (half quadratic) and anisotropic diffusion points of view. We present a unified variational approach to image deblurring and impulse noise removal. The objective functional consists of a fidelity term and a regularizer. Data fidelity is quantified using the robust modified L 1 norm, and elements from the Mumford-Shah functional are used for regularization. We show that the Mumford-Shah regularizer can be viewed as an extended line process. It reflects spatial organization properties of the image edges, that do not appear in the common line process or anisotropic diffusion. This allows to distinguish outliers from edges and leads to superior experimental results.

Original languageEnglish
Pages (from-to)279-298
Number of pages20
JournalInternational Journal of Computer Vision
Issue number3
StatePublished - Dec 2006


FundersFunder number
EC 6th Framework IST Programme
Israel Science Foundation


    • Image deblurring
    • Impulse noise
    • Restoration
    • Salt and pepper noise
    • Variational methods


    Dive into the research topics of 'Image deblurring in the presence of impulsive noise'. Together they form a unique fingerprint.

    Cite this