TY - JOUR
T1 - IKAP/Elp1 involvement in cytoskeleton regulation and implication for familial dysautonomia
AU - Cheishvili, David
AU - Maayan, Channa
AU - Cohen-Kupiec, Rachel
AU - Lefler, Sharon
AU - Weil, Miguel
AU - Ast, Gil
AU - Razin, Aharon
N1 - Funding Information:
This work was partially supported by a donation from Mr Joseph Mizrahi, by the Dysautonomia Foundation, Inc. and by the Israeli Familial Dysautonomia Organization.
PY - 2011/4
Y1 - 2011/4
N2 - Deficiency in the IKAP/Elp1 protein leads to the recessive sensory autosomal congenital neuropathy which is called familial dysautonomia (FD). This protein was originally identified as a role player in transcriptional elongation being a subunit of the RNAPII transcriptional Elongator multi-protein complex. Subsequently, IKAP/Elp1 was shown to play various functions in the cytoplasm. Here, we describe experiments performed with IKAP/Elp1 downregulated cell lines and FD-derived cells and tissues. Immunostaining of the cytoskeleton component a-tubulin in IKAP/Elp1 downregulated cells revealed disorganization of the microtubules (MTs) that was reflected in aberrant cell shape and process formation. In contrast to a recent report on the decrease in a-tubulin acetylation in IKAP/Elp1 downregulated cells, we were unable to observe any effect of IKAP/Elp1 deficiency on a-tubulin acetylation in the FD cerebrum and in a variety of IKAP/Elp1 downregulated cell lines. To explore possible candidates involved in the observed aberrations in MTs, we focused on superior cervical ganglion-10 protein (SCG10), also called STMN2, which is known to be an MT destabilizing protein. We have found that SCG10 is upregulated in the IKAP/Elp1-deficient FD cerebrum, FD fibroblasts and in IKAP/Elp1 downregulated neuroblastoma cell line. To better understand the effect of IKAP/Elp1 deficiency on SCG10 expression, we investigated the possible involvement of RE-1-silencing transcription factor (REST), a known repressor of the SCG10 gene. Indeed, REST was downregulated in the IKAP/Elp1-deficient FD cerebrum and IKAP/Elp1 downregulated neuroblastoma cell line. These results could shed light on a possible link between IKAP/Elp1 deficiency and cytoskeleton destabilization.
AB - Deficiency in the IKAP/Elp1 protein leads to the recessive sensory autosomal congenital neuropathy which is called familial dysautonomia (FD). This protein was originally identified as a role player in transcriptional elongation being a subunit of the RNAPII transcriptional Elongator multi-protein complex. Subsequently, IKAP/Elp1 was shown to play various functions in the cytoplasm. Here, we describe experiments performed with IKAP/Elp1 downregulated cell lines and FD-derived cells and tissues. Immunostaining of the cytoskeleton component a-tubulin in IKAP/Elp1 downregulated cells revealed disorganization of the microtubules (MTs) that was reflected in aberrant cell shape and process formation. In contrast to a recent report on the decrease in a-tubulin acetylation in IKAP/Elp1 downregulated cells, we were unable to observe any effect of IKAP/Elp1 deficiency on a-tubulin acetylation in the FD cerebrum and in a variety of IKAP/Elp1 downregulated cell lines. To explore possible candidates involved in the observed aberrations in MTs, we focused on superior cervical ganglion-10 protein (SCG10), also called STMN2, which is known to be an MT destabilizing protein. We have found that SCG10 is upregulated in the IKAP/Elp1-deficient FD cerebrum, FD fibroblasts and in IKAP/Elp1 downregulated neuroblastoma cell line. To better understand the effect of IKAP/Elp1 deficiency on SCG10 expression, we investigated the possible involvement of RE-1-silencing transcription factor (REST), a known repressor of the SCG10 gene. Indeed, REST was downregulated in the IKAP/Elp1-deficient FD cerebrum and IKAP/Elp1 downregulated neuroblastoma cell line. These results could shed light on a possible link between IKAP/Elp1 deficiency and cytoskeleton destabilization.
UR - http://www.scopus.com/inward/record.url?scp=79953121016&partnerID=8YFLogxK
U2 - 10.1093/hmg/ddr036
DO - 10.1093/hmg/ddr036
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:79953121016
SN - 0964-6906
VL - 20
SP - 1585
EP - 1594
JO - Human Molecular Genetics
JF - Human Molecular Genetics
IS - 8
M1 - ddr036
ER -