Ideal polymers near scale-free surfaces

Yosi Hammer, Yacov Kantor

Research output: Contribution to journalArticlepeer-review


The number of allowed configurations of a polymer is reduced by the presence of a repulsive surface resulting in an entropic force between them. We develop a method to calculate the entropic force, and detailed pressure distribution, for long ideal polymers near a scale-free repulsive surface. For infinite polymers the monomer density is related to the electrostatic potential near a conducting surface of a charge placed at the point where the polymer end is held. Pressure of the polymer on the surface is then related to the charge density distribution in the electrostatic problem. We derive explicit expressions for pressure distributions and monomer densities for ideal polymers near a two- or three-dimensional wedge, and for a circular cone in three dimensions. Pressure of the polymer diverges near sharp corners in a manner resembling (but not identical to) the electric field divergence near conducting surfaces. We provide formalism for calculation of all components of the total force in situations without axial symmetry.

Original languageEnglish
Article number022601
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Issue number2
StatePublished - 4 Feb 2014


Dive into the research topics of 'Ideal polymers near scale-free surfaces'. Together they form a unique fingerprint.

Cite this