TY - JOUR
T1 - Hybrid ray-FDTD moving coordinate frame approach for long range tracking of collimated wavepackets - Abstract
AU - Pemper, Y.
AU - Heyman, E.
AU - Kastner, R.
AU - Ziolkowski, R. W.
PY - 2000
Y1 - 2000
N2 - Modeling of long range propagation of collimated wavepackets poses some major difficulties with the conventional FDTD scheme. The difficulties arise from the vast computer resources needed to discretize the entire region of interest and the accumulation of numerical dispersion error. As a means for circumventing these difficulties, the moving frame FDTD approach is in this work. In this approach, the computational grid size is limited to the order of the pulse length, and it and moves along with the pulse. The issues discussed in conjunction with this method are those of numerical dispersion, which is shown to be reduced substantially compared with the stationary formulation, numerical stability, and absorbing boundary conditions at the leading, trailing and side boundaries, Numerical results of pulsed beam propagation in both homogeneous and plane stratified media are shown, and the capability of the method is demonstrated with propagation distances exceeding the order of 104 pulse lengths.
AB - Modeling of long range propagation of collimated wavepackets poses some major difficulties with the conventional FDTD scheme. The difficulties arise from the vast computer resources needed to discretize the entire region of interest and the accumulation of numerical dispersion error. As a means for circumventing these difficulties, the moving frame FDTD approach is in this work. In this approach, the computational grid size is limited to the order of the pulse length, and it and moves along with the pulse. The issues discussed in conjunction with this method are those of numerical dispersion, which is shown to be reduced substantially compared with the stationary formulation, numerical stability, and absorbing boundary conditions at the leading, trailing and side boundaries, Numerical results of pulsed beam propagation in both homogeneous and plane stratified media are shown, and the capability of the method is demonstrated with propagation distances exceeding the order of 104 pulse lengths.
UR - http://www.scopus.com/inward/record.url?scp=0034441769&partnerID=8YFLogxK
U2 - 10.1163/156939300X01021
DO - 10.1163/156939300X01021
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0034441769
SN - 0920-5071
VL - 14
SP - 1115
EP - 1117
JO - Journal of Electromagnetic Waves and Applications
JF - Journal of Electromagnetic Waves and Applications
IS - 8
ER -