TY - JOUR
T1 - Hyaluronan-modified and regular multilamellar liposomes provide sub-cellular targeting to macrophages, without eliciting a pro-inflammatory response
AU - Glucksam-Galnoy, Yifat
AU - Zor, Tsaffrir
AU - Margalit, Rimona
PY - 2012/6/10
Y1 - 2012/6/10
N2 - Macrophages, pivotal cells in onset and progression of inflammation, can benefit from sub-cellular drug targeting to the molecular loci of drug action, whether cell membrane or cell interior. Postulating manipulation of liposome size and surface properties can provide sub-cellular targeting, we studied: thermodynamics of liposome-macrophage binding; liposome cellular localizations; liposome safety including pro-inflammatory cytokine production. We aimed at extending the body of knowledge on interactions of regular unilamellar (RL-ULV) and multilamellar (RL-MLV) liposomes with macrophages. We investigated, for the first time, the interactions of hyaluronan (HA) surface-modified liposomes (HA-ULV and HA-MLV) with macrophages, with respect to multiple equilibria binding combined with cellular localization. Macrophages bound all four liposome types, substantially-favoring the two MLV species over the two ULV species, and internalizing only RL-MLV. Three macrophage-internalization inhibitors (2-deoxyglucose, LY294002 and Wortmannin) reduced RL-MLV internalization but not binding affinity nor binding capacity. Both MLV types were not detrimental to cell proliferation, nor did they elicit TNF-α production in resting and in LPS-activated macrophages. Moreover, a 24-hour exposure of LPS-activated macrophages to HA-MLV reduced TNF-α production by 40%, indicating potential for anti-inflammatory activity. In conclusion RL-MLV and HA-MLV are the liposomes of choice for delivering anti-inflammatory drugs to the macrophage surface or its interior, according to the loci of drug action.
AB - Macrophages, pivotal cells in onset and progression of inflammation, can benefit from sub-cellular drug targeting to the molecular loci of drug action, whether cell membrane or cell interior. Postulating manipulation of liposome size and surface properties can provide sub-cellular targeting, we studied: thermodynamics of liposome-macrophage binding; liposome cellular localizations; liposome safety including pro-inflammatory cytokine production. We aimed at extending the body of knowledge on interactions of regular unilamellar (RL-ULV) and multilamellar (RL-MLV) liposomes with macrophages. We investigated, for the first time, the interactions of hyaluronan (HA) surface-modified liposomes (HA-ULV and HA-MLV) with macrophages, with respect to multiple equilibria binding combined with cellular localization. Macrophages bound all four liposome types, substantially-favoring the two MLV species over the two ULV species, and internalizing only RL-MLV. Three macrophage-internalization inhibitors (2-deoxyglucose, LY294002 and Wortmannin) reduced RL-MLV internalization but not binding affinity nor binding capacity. Both MLV types were not detrimental to cell proliferation, nor did they elicit TNF-α production in resting and in LPS-activated macrophages. Moreover, a 24-hour exposure of LPS-activated macrophages to HA-MLV reduced TNF-α production by 40%, indicating potential for anti-inflammatory activity. In conclusion RL-MLV and HA-MLV are the liposomes of choice for delivering anti-inflammatory drugs to the macrophage surface or its interior, according to the loci of drug action.
KW - Hyaluronan
KW - Internalization
KW - Liposomes
KW - Macrophage
KW - TNF-α
KW - Targeting
UR - http://www.scopus.com/inward/record.url?scp=84861710914&partnerID=8YFLogxK
U2 - 10.1016/j.jconrel.2011.10.008
DO - 10.1016/j.jconrel.2011.10.008
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 22019559
AN - SCOPUS:84861710914
SN - 0168-3659
VL - 160
SP - 388
EP - 393
JO - Journal of Controlled Release
JF - Journal of Controlled Release
IS - 2
ER -