Human gut bacteria contain acquired interbacterial defence systems

Benjamin D. Ross, Adrian J. Verster, Matthew C. Radey, Danica T. Schmidtke, Christopher E. Pope, Lucas R. Hoffman, Adeline M. Hajjar, S. Brook Peterson, Elhanan Borenstein, Joseph D. Mougous

Research output: Contribution to journalArticlepeer-review

Abstract

The human gastrointestinal tract consists of a dense and diverse microbial community, the composition of which is intimately linked to health. Extrinsic factors such as diet and host immunity are insufficient to explain the constituents of this community, and direct interactions between co-resident microorganisms have been implicated as important drivers of microbiome composition. The genomes of bacteria derived from the gut microbiome contain several pathways that mediate contact-dependent interbacterial antagonism1–3. Many members of the Gram-negative order Bacteroidales encode the type VI secretion system (T6SS), which facilitates the delivery of toxic effector proteins into adjacent cells4,5. Here we report the occurrence of acquired interbacterial defence (AID) gene clusters in Bacteroidales species that reside within the human gut microbiome. These clusters encode arrays of immunity genes that protect against T6SS-mediated intra- and inter-species bacterial antagonism. Moreover, the clusters reside on mobile elements, and we show that their transfer is sufficient to confer resistance to toxins in vitro and in gnotobiotic mice. Finally, we identify and validate the protective capability of a recombinase-associated AID subtype (rAID-1) that is present broadly in Bacteroidales genomes. These rAID-1 gene clusters have a structure suggestive of active gene acquisition and include predicted immunity factors of toxins derived from diverse organisms. Our data suggest that neutralization of contact-dependent interbacterial antagonism by AID systems helps to shape human gut microbiome ecology.

Original languageEnglish
Pages (from-to)224-228
Number of pages5
JournalNature
Volume575
Issue number7781
DOIs
StatePublished - 7 Nov 2019

Fingerprint

Dive into the research topics of 'Human gut bacteria contain acquired interbacterial defence systems'. Together they form a unique fingerprint.

Cite this