TY - JOUR
T1 - HOMOGENEOUS SPHERICAL DATA OF ORBITS IN SPHERICAL EMBEDDINGS
AU - Gagliardi, Giuliano
AU - Hofscheier, Johannes
N1 - Publisher Copyright:
© 2015, Springer Science+Business Media New York.
PY - 2015/3
Y1 - 2015/3
N2 - Let G be a connected reductive complex algebraic group. Luna assigned to any spherical homogeneous space G/H a combinatorial object called a homogeneous spherical datum. By a theorem of Losev, this object uniquely determines G/H up to G-equivariant isomorphism. In this paper, we determine the homogeneous spherical datum of a G-orbit X0 in a spherical embedding G/H ↪ X.
AB - Let G be a connected reductive complex algebraic group. Luna assigned to any spherical homogeneous space G/H a combinatorial object called a homogeneous spherical datum. By a theorem of Losev, this object uniquely determines G/H up to G-equivariant isomorphism. In this paper, we determine the homogeneous spherical datum of a G-orbit X0 in a spherical embedding G/H ↪ X.
UR - http://www.scopus.com/inward/record.url?scp=84925506695&partnerID=8YFLogxK
U2 - 10.1007/s00031-014-9297-2
DO - 10.1007/s00031-014-9297-2
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84925506695
SN - 1083-4362
VL - 20
SP - 83
EP - 98
JO - Transformation Groups
JF - Transformation Groups
IS - 1
ER -