Skip to main navigation
Skip to search
Skip to main content
Tel Aviv University Home
Update Request & User Guide (TAU staff only)
Home
Experts
Research units
Research output
Datasets
Prizes
Activities
Press/Media
Search by expertise, name or affiliation
Hilbert's Irreducibility Theorem via Random Walks
Lior Bary-Soroker
*
, Daniele Garzoni
*
Corresponding author for this work
School of Mathematical Sciences
Research output
:
Contribution to journal
›
Article
›
peer-review
3
Scopus citations
Overview
Fingerprint
Fingerprint
Dive into the research topics of 'Hilbert's Irreducibility Theorem via Random Walks'. Together they form a unique fingerprint.
Sort by
Weight
Alphabetically
Keyphrases
Random Walk
100%
Hilbert's Irreducibility Theorem
100%
Cayley Graph
50%
Number Fields
50%
Group Action
50%
Semisimple
50%
Zariski-dense Subgroups
50%
Characteristic Polynomial
50%
Galois Covering
50%
Linear Algebraic Groups
50%
Serres
50%
Finitely Generated
50%
Thin Set
50%
Global Function Fields
50%
Mathematics
Irreducibility
100%
Random Walk
100%
Cayley Graph
50%
Fixed Points
50%
Probability Theory
50%
Necessary Condition
50%
Analogous Result
50%
Semisimple
50%
Characteristic Polynomial
50%
Linear Algebraic Groups
50%
Global Function Field
50%