High-Throughput Imaging of CRISPR- and Recombinant Adeno-Associated Virus-Induced DNA Damage Response in Human Hematopoietic Stem and Progenitor Cells

Daniel Allen*, Lucien E. Weiss, Alon Saguy, Michael Rosenberg, Ortal Iancu, Omri Matalon, Ciaran Lee, Katia Beider, Arnon Nagler, Yoav Shechtman, Ayal Hendel

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

CRISPR-Cas technology has revolutionized gene editing, but concerns remain due to its propensity for off-target interactions. This, combined with genotoxicity related to both CRISPR-Cas9-induced double-strand breaks and transgene delivery, poses a significant liability for clinical genome-editing applications. Current best practice is to optimize genome-editing parameters in preclinical studies. However, quantitative tools that measure off-target interactions and genotoxicity are costly and time-consuming, limiting the practicality of screening large numbers of potential genome-editing reagents and conditions. Here, we show that flow-based imaging facilitates DNA damage characterization of hundreds of human hematopoietic stem and progenitor cells per minute after treatment with CRISPR-Cas9 and recombinant adeno-associated virus serotype 6. With our web-based platform that leverages deep learning for image analysis, we find that greater DNA damage response is observed for guide RNAs with higher genome-editing activity, differentiating even single on-target guide RNAs with different levels of off-target interactions. This work simplifies the characterization and screening process of genome-editing parameters toward enabling safer and more effective gene-therapy applications.

Original languageEnglish
Pages (from-to)80-94
Number of pages15
JournalCRISPR Journal
Volume5
Issue number1
DOIs
StatePublished - Feb 2022

Fingerprint

Dive into the research topics of 'High-Throughput Imaging of CRISPR- and Recombinant Adeno-Associated Virus-Induced DNA Damage Response in Human Hematopoietic Stem and Progenitor Cells'. Together they form a unique fingerprint.

Cite this