TY - JOUR
T1 - High harmonic generation without tunnel ionization
AU - Berkheim, Jonathan
AU - Bordo, Eliyahu
AU - Ragonis, Eldar
AU - Merensky, Lev
AU - Fleischer, Avner
N1 - Publisher Copyright:
© 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
PY - 2023/10
Y1 - 2023/10
N2 - A high harmonic generation (HHG) scheme, which does not rely on tunnel ionization as the ionization mechanism but rather on single-photon ionization, is theoretically proposed and numerically demonstrated. The scheme uses two driver fields: an extreme-ultraviolet driver which induces the ionization, and a circularly polarized, corotating, two-color infrared driver carried at a fundamental frequency and its second harmonic which induces the recollision. Using classical and time-dependent Schrödinger equation simulations of a model argon atom, we show that in this scheme ionization is essentially decoupled from recollision. Releasing the HHG mechanism from being tunneling dependent reduces its degree of nonlinearity, which offers interesting capabilities in attosecond science, such as generation of high harmonics from highly charged ions, or from specific deep core electronic levels. It is shown that the emitted high harmonics involve the absorption of photons of one color of the infrared driver, and the emission of photons of the second color. This calls for future examination of the possible correlations between the emitted high harmonics.
AB - A high harmonic generation (HHG) scheme, which does not rely on tunnel ionization as the ionization mechanism but rather on single-photon ionization, is theoretically proposed and numerically demonstrated. The scheme uses two driver fields: an extreme-ultraviolet driver which induces the ionization, and a circularly polarized, corotating, two-color infrared driver carried at a fundamental frequency and its second harmonic which induces the recollision. Using classical and time-dependent Schrödinger equation simulations of a model argon atom, we show that in this scheme ionization is essentially decoupled from recollision. Releasing the HHG mechanism from being tunneling dependent reduces its degree of nonlinearity, which offers interesting capabilities in attosecond science, such as generation of high harmonics from highly charged ions, or from specific deep core electronic levels. It is shown that the emitted high harmonics involve the absorption of photons of one color of the infrared driver, and the emission of photons of the second color. This calls for future examination of the possible correlations between the emitted high harmonics.
UR - http://www.scopus.com/inward/record.url?scp=85177471073&partnerID=8YFLogxK
U2 - 10.1103/PhysRevResearch.5.043138
DO - 10.1103/PhysRevResearch.5.043138
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85177471073
SN - 2643-1564
VL - 5
JO - Physical Review Research
JF - Physical Review Research
IS - 4
M1 - 043138
ER -