High-field pulsed EPR spectroscopy under magic angle spinning

Orit Nir-Arad, Alexander B. Fialkov, David H. Shlomi, Nurit Manukovsky, Frederic Mentink-Vigier, Ilia Kaminker*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

In this work, we demonstrate the first pulsed electron paramagnetic resonance (EPR) experiments performed under magic angle spinning (MAS) at high magnetic field. Unlike nuclear magnetic resonance (NMR) and dynamic nuclear polarization (DNP), commonly performed at high magnetic fields and under MAS to maximize sensitivity and resolution, EPR is usually measured at low magnetic fields and, with the exception of the Spiess group work in the late 1990s, never under MAS, due to great instrumentational challenges. This hampers the investigation of DNP mechanisms, in which electron spin dynamics play a central role, because no experimental data about the latter under DNP-characteristic conditions are available. We hereby present our dedicated, homebuilt MAS-EPR probehead and show the pulsed MAS-EPR spectra of P1 center diamond defect recorded at 7 tesla. Our results reveal unique effects of MAS on EPR line shape, intensity, and signal dephasing. Time-domain simulations reproduce the observed changes in the line shapes and the trends in the signal intensity.

Original languageEnglish
Article numbereadq6073
JournalScience advances
Volume10
Issue number35
DOIs
StatePublished - 30 Aug 2024

Funding

FundersFunder number
State of Florida
Israel Science Foundation1058/23, 2149/19
Division of Materials ResearchdMR-2128556, dMR-1644779
National Institutes of HealthRM1-GM148766

    Fingerprint

    Dive into the research topics of 'High-field pulsed EPR spectroscopy under magic angle spinning'. Together they form a unique fingerprint.

    Cite this