TY - GEN
T1 - Hierarchical Fine-Tuning for joint Liver Lesion Segmentation and Lesion Classification in CT
AU - Heker, Michal
AU - Ben-Cohen, Avi
AU - Greenspan, Hayit
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/7
Y1 - 2019/7
N2 - We present an automatic method for joint liver lesion segmentation and classification using a hierarchical fine-tuning framework. Our dataset is small, containing 332 2-D CT examinations with lesion annotated into 3 lesion types: cysts, hemangiomas, and metastases. Using a cascaded U-net that performs segmentation and classification simultaneously, we trained a strong lesion segmentation model on the dataset of MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge. We used the trained weights to fine-tune a slightly modified model to obtain improved lesion segmentation and classification, on the smaller dataset. Since pre-training was done with similar data on a related task, we were able to learn more representative features (especially higher-level features in the U-Net's encoder), and improve pixel-wise classification results. We show an improvement of over 10% in Dice score and classification accuracy, compared to a baseline model. We further improve the classification performance by hierarchically freezing the encoder part of the network and achieve an improvement of over 15% in Dice score and classification accuracy. We compare our results with an existing method and show an improvement of 14% in the success rate and 12% in the classification accuracy.
AB - We present an automatic method for joint liver lesion segmentation and classification using a hierarchical fine-tuning framework. Our dataset is small, containing 332 2-D CT examinations with lesion annotated into 3 lesion types: cysts, hemangiomas, and metastases. Using a cascaded U-net that performs segmentation and classification simultaneously, we trained a strong lesion segmentation model on the dataset of MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge. We used the trained weights to fine-tune a slightly modified model to obtain improved lesion segmentation and classification, on the smaller dataset. Since pre-training was done with similar data on a related task, we were able to learn more representative features (especially higher-level features in the U-Net's encoder), and improve pixel-wise classification results. We show an improvement of over 10% in Dice score and classification accuracy, compared to a baseline model. We further improve the classification performance by hierarchically freezing the encoder part of the network and achieve an improvement of over 15% in Dice score and classification accuracy. We compare our results with an existing method and show an improvement of 14% in the success rate and 12% in the classification accuracy.
UR - http://www.scopus.com/inward/record.url?scp=85077867079&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2019.8857127
DO - 10.1109/EMBC.2019.8857127
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
C2 - 31946038
AN - SCOPUS:85077867079
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 895
EP - 898
BT - 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Y2 - 23 July 2019 through 27 July 2019
ER -