Hierarchical Fine-Tuning for joint Liver Lesion Segmentation and Lesion Classification in CT

Michal Heker, Avi Ben-Cohen, Hayit Greenspan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

We present an automatic method for joint liver lesion segmentation and classification using a hierarchical fine-tuning framework. Our dataset is small, containing 332 2-D CT examinations with lesion annotated into 3 lesion types: cysts, hemangiomas, and metastases. Using a cascaded U-net that performs segmentation and classification simultaneously, we trained a strong lesion segmentation model on the dataset of MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge. We used the trained weights to fine-tune a slightly modified model to obtain improved lesion segmentation and classification, on the smaller dataset. Since pre-training was done with similar data on a related task, we were able to learn more representative features (especially higher-level features in the U-Net's encoder), and improve pixel-wise classification results. We show an improvement of over 10% in Dice score and classification accuracy, compared to a baseline model. We further improve the classification performance by hierarchically freezing the encoder part of the network and achieve an improvement of over 15% in Dice score and classification accuracy. We compare our results with an existing method and show an improvement of 14% in the success rate and 12% in the classification accuracy.

Original languageEnglish
Title of host publication2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages895-898
Number of pages4
ISBN (Electronic)9781538613115
DOIs
StatePublished - Jul 2019
Event41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - Berlin, Germany
Duration: 23 Jul 201927 Jul 2019

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Country/TerritoryGermany
CityBerlin
Period23/07/1927/07/19

Fingerprint

Dive into the research topics of 'Hierarchical Fine-Tuning for joint Liver Lesion Segmentation and Lesion Classification in CT'. Together they form a unique fingerprint.

Cite this