Heisenberg scaling with weak measurement: a quantum state discrimination point of view

Andrew N. Jordan*, Jeff Tollaksen, James E. Troupe, Justin Dressel, Yakir Aharonov

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


We examine the results of the paper “Precision metrology using weak measurements” (Zhang et al. arXiv:1310.5302, 2013) from a quantum state discrimination point of view. The Heisenberg scaling of the photon number for the precision of the interaction parameter between coherent light and a spin one-half particle (or pseudo-spin) has a simple interpretation in terms of the interaction rotating the quantum state to an orthogonal one. To achieve this scaling, the information must be extracted from the spin rather than from the coherent state of light, limiting the applications of the method to phenomena such as cross-phase modulation. We next investigate the effect of dephasing noise and show a rapid degradation of precision, in agreement with general results in the literature concerning Heisenberg scaling metrology. We also demonstrate that a von Neumann-type measurement interaction can display a similar effect with no system/meter entanglement.

Original languageEnglish
Pages (from-to)5-15
Number of pages11
JournalQuantum Studies: Mathematics and Foundations
Issue number1
StatePublished - 1 Apr 2015


  • Quantum metrology
  • State discrimination
  • Weak value amplification


Dive into the research topics of 'Heisenberg scaling with weak measurement: a quantum state discrimination point of view'. Together they form a unique fingerprint.

Cite this