TY - JOUR
T1 - Heisenberg scaling with weak measurement
T2 - a quantum state discrimination point of view
AU - Jordan, Andrew N.
AU - Tollaksen, Jeff
AU - Troupe, James E.
AU - Dressel, Justin
AU - Aharonov, Yakir
N1 - Publisher Copyright:
© 2015, Chapman University.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2015/4/1
Y1 - 2015/4/1
N2 - We examine the results of the paper “Precision metrology using weak measurements” (Zhang et al. arXiv:1310.5302, 2013) from a quantum state discrimination point of view. The Heisenberg scaling of the photon number for the precision of the interaction parameter between coherent light and a spin one-half particle (or pseudo-spin) has a simple interpretation in terms of the interaction rotating the quantum state to an orthogonal one. To achieve this scaling, the information must be extracted from the spin rather than from the coherent state of light, limiting the applications of the method to phenomena such as cross-phase modulation. We next investigate the effect of dephasing noise and show a rapid degradation of precision, in agreement with general results in the literature concerning Heisenberg scaling metrology. We also demonstrate that a von Neumann-type measurement interaction can display a similar effect with no system/meter entanglement.
AB - We examine the results of the paper “Precision metrology using weak measurements” (Zhang et al. arXiv:1310.5302, 2013) from a quantum state discrimination point of view. The Heisenberg scaling of the photon number for the precision of the interaction parameter between coherent light and a spin one-half particle (or pseudo-spin) has a simple interpretation in terms of the interaction rotating the quantum state to an orthogonal one. To achieve this scaling, the information must be extracted from the spin rather than from the coherent state of light, limiting the applications of the method to phenomena such as cross-phase modulation. We next investigate the effect of dephasing noise and show a rapid degradation of precision, in agreement with general results in the literature concerning Heisenberg scaling metrology. We also demonstrate that a von Neumann-type measurement interaction can display a similar effect with no system/meter entanglement.
KW - Quantum metrology
KW - State discrimination
KW - Weak value amplification
UR - http://www.scopus.com/inward/record.url?scp=84938567599&partnerID=8YFLogxK
U2 - 10.1007/s40509-015-0036-8
DO - 10.1007/s40509-015-0036-8
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84938567599
VL - 2
SP - 5
EP - 15
JO - Quantum Studies: Mathematics and Foundations
JF - Quantum Studies: Mathematics and Foundations
SN - 2196-5609
IS - 1
ER -