Heat-Resistant Energetic Materials Deriving from Benzopyridotetraazapentalene: Halogen Bonding Effects on the Outcome of Crystal Structure, Thermal Stability and Sensitivity

Zhenqi Zhang, Wenjing Geng, Wei Yang, Qing Ma*, Wei Li*, Guijuan Fan*, Ya Chen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Heat-resistant energetic material (HREM) has shown its broad applications in petroleum and natural gas exploration, aerospace vehicle as well as solid rocket formulations. Benzopyridotetraazapentalene (BPTAP) (d: 1.84 g cm−3, D: 7670 m s−1, IS: 9 J, Td: 366 °C) is a heat-resistant energetic material, which is more dense and energetic than those of commercial HREM hexanitrosilbene (HNS) (d: 1.74 g cm−3, D: 7612 m s−1, IS: 5 J, Td: 318 °C). However, low solubility in most of commonly-used solvents has restricted its applications in detonators as nano-energetic materials. Meanwhile, recognition on this fused organic backbone is still limited. Herein, we report a chlorine-inclusion strategy and facile approaches to yield three new derivatives of BPTAP. It is notable that compound 6-a exhibits its high density (1.92 g cm−3), superior thermal stability (Td: 334 °C), high detonation performance (D: 8084 m s−1), comparable sensitivity (IS: 3 J) to that of HNS, surpassing those of commercially-used highly-sensitive primary energetic material lead azide (LA). It is interesting that the chlorine-inclusion in different position of fused benzopyridotetraazapentalene framework has greatly affected their physical properties such as crystal structure, thermal stability and sensitivity. This investigation offers a unique perspective for deeply exploring the relationship between structure and performance of energetic materials.

Original languageEnglish
Pages (from-to)593-599
Number of pages7
JournalPropellants, Explosives, Pyrotechnics
Volume46
Issue number4
DOIs
StatePublished - Apr 2021
Externally publishedYes

Keywords

  • Chlorine-inclusion
  • Crystallography
  • Fused heterocyclic backbone
  • Heat-resistant energetic materials
  • Structure-property relationship

Fingerprint

Dive into the research topics of 'Heat-Resistant Energetic Materials Deriving from Benzopyridotetraazapentalene: Halogen Bonding Effects on the Outcome of Crystal Structure, Thermal Stability and Sensitivity'. Together they form a unique fingerprint.

Cite this