Abstract
We are interested in counting integer and rational points in affine algebraic varieties, also under congruence conditions. We introduce the notions of a strongly Hardy-Littlewood variety and a relatively Hardy-Littlewood variety, in terms of counting rational points satisfying congruence conditions. The definition of a strongly Hardy-Littlewood variety is given in such a way that varieties for which the Hardy-Littlewood circle method is applicable are strongly Hardy-Littlewood. We prove that certain affine homogeneous spaces of semisimple groups are strongly Hardy-Littlewood varieties. Moreover, we prove that many homogeneous spaces are relatively Hardy-Littlewood, but not strongly Hardy-Littlewood. This yields a new class of varieties for with the asymptotic density of integer points can be computed in terms of a product of local densities.
Original language | English |
---|---|
Pages (from-to) | 37-66 |
Number of pages | 30 |
Journal | Inventiones Mathematicae |
Volume | 119 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1995 |