TY - JOUR
T1 - Hardness-randomness tradeoffs for bounded depth arithmetic circuits
AU - Dvir, Zeev
AU - Shpilka, Amir
AU - Yehudayoff, Amir
PY - 2009
Y1 - 2009
N2 - In this paper we show that lower bounds for bounded depth arithmetic circuits imply derandomization of polynomial identity testing for bounded depth arithmetic circuits. More formally, if there exists an explicit polynomial f that cannot be computed by a depth d arithmetic circuit of small size, then there exists an e.cient deterministic black-box algorithm to test whether a given depth d-5 circuit that computes a polynomial of relatively small individual degrees is identically zero or not. In particular, if we are guaranteed that the tested circuit computes a multilinear polynomial, then we can perform the identity test e.ciently. To the best of our knowledge this is the .rst hardness-randomness tradeo. for bounded depth arithmetic circuits. The above results are obtained using the arithmetic Nisan - Wigderson generator of Kabanets and Impagliazzo together with a new theorem on bounded depth circuits, which is the main technical contribution of our work. This theorem deals with polynomial equations of the form P(x1, . . . ,xn, y) β 0 and shows that if P has a circuit of depth d and size s and if the polynomial f(x1, . . . , xn) satis.es P(x1, . . . , xn, f) β 0, then f has a circuit of depth d+3 and size poly(s,mr), where m is the total degree of f and r is the degree of y in P. This circuit for f can be found probabilistically in time poly(s,mr). In the other direction we observe that the methods of Kabanets and Impagliazzo can be used to show that derandomizing identity testing for bounded depth circuits implies lower bounds for the same class of circuits. More formally, if we can derandomize polynomial identity testing for bounded depth circuits, then NEXP does not have bounded depth arithmetic circuits. That is, either NEXP P/poly or the Permanent is not computable by polynomial size bounded depth arithmetic circuits.
AB - In this paper we show that lower bounds for bounded depth arithmetic circuits imply derandomization of polynomial identity testing for bounded depth arithmetic circuits. More formally, if there exists an explicit polynomial f that cannot be computed by a depth d arithmetic circuit of small size, then there exists an e.cient deterministic black-box algorithm to test whether a given depth d-5 circuit that computes a polynomial of relatively small individual degrees is identically zero or not. In particular, if we are guaranteed that the tested circuit computes a multilinear polynomial, then we can perform the identity test e.ciently. To the best of our knowledge this is the .rst hardness-randomness tradeo. for bounded depth arithmetic circuits. The above results are obtained using the arithmetic Nisan - Wigderson generator of Kabanets and Impagliazzo together with a new theorem on bounded depth circuits, which is the main technical contribution of our work. This theorem deals with polynomial equations of the form P(x1, . . . ,xn, y) β 0 and shows that if P has a circuit of depth d and size s and if the polynomial f(x1, . . . , xn) satis.es P(x1, . . . , xn, f) β 0, then f has a circuit of depth d+3 and size poly(s,mr), where m is the total degree of f and r is the degree of y in P. This circuit for f can be found probabilistically in time poly(s,mr). In the other direction we observe that the methods of Kabanets and Impagliazzo can be used to show that derandomizing identity testing for bounded depth circuits implies lower bounds for the same class of circuits. More formally, if we can derandomize polynomial identity testing for bounded depth circuits, then NEXP does not have bounded depth arithmetic circuits. That is, either NEXP P/poly or the Permanent is not computable by polynomial size bounded depth arithmetic circuits.
KW - Derandomization
KW - Hardness
KW - Polynomial factoring
KW - Polynomial identity testing
KW - Randomness
UR - http://www.scopus.com/inward/record.url?scp=70350173835&partnerID=8YFLogxK
U2 - 10.1137/080735850
DO - 10.1137/080735850
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:70350173835
SN - 0097-5397
VL - 39
SP - 1279
EP - 1293
JO - SIAM Journal on Computing
JF - SIAM Journal on Computing
IS - 4
ER -