TY - JOUR
T1 - Graph-Coupled Oscillator Networks
AU - Rusch, T. Konstantin
AU - Chamberlain, Benjamin P.
AU - Rowbottom, James
AU - Mishra, Siddhartha
AU - Bronstein, Michael M.
N1 - Publisher Copyright:
Copyright © 2022 by the author(s)
PY - 2022
Y1 - 2022
N2 - We propose Graph-Coupled Oscillator Networks (GraphCON), a novel framework for deep learning on graphs. It is based on discretizations of a second-order system of ordinary differential equations (ODEs), which model a network of nonlinear controlled and damped oscillators, coupled via the adjacency structure of the underlying graph. The flexibility of our framework permits any basic GNN layer (e.g. convolutional or attentional) as the coupling function, from which a multi-layer deep neural network is built up via the dynamics of the proposed ODEs. We relate the oversmoothing problem, commonly encountered in GNNs, to the stability of steady states of the underlying ODE and show that zero-Dirichlet energy steady states are not stable for our proposed ODEs. This demonstrates that the proposed framework mitigates the oversmoothing problem. Moreover, we prove that GraphCON mitigates the exploding and vanishing gradients problem to facilitate training of deep multi-layer GNNs. Finally, we show that our approach offers competitive performance with respect to the state-of-the-art on a variety of graph-based learning tasks.
AB - We propose Graph-Coupled Oscillator Networks (GraphCON), a novel framework for deep learning on graphs. It is based on discretizations of a second-order system of ordinary differential equations (ODEs), which model a network of nonlinear controlled and damped oscillators, coupled via the adjacency structure of the underlying graph. The flexibility of our framework permits any basic GNN layer (e.g. convolutional or attentional) as the coupling function, from which a multi-layer deep neural network is built up via the dynamics of the proposed ODEs. We relate the oversmoothing problem, commonly encountered in GNNs, to the stability of steady states of the underlying ODE and show that zero-Dirichlet energy steady states are not stable for our proposed ODEs. This demonstrates that the proposed framework mitigates the oversmoothing problem. Moreover, we prove that GraphCON mitigates the exploding and vanishing gradients problem to facilitate training of deep multi-layer GNNs. Finally, we show that our approach offers competitive performance with respect to the state-of-the-art on a variety of graph-based learning tasks.
UR - http://www.scopus.com/inward/record.url?scp=85163101295&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.conferencearticle???
AN - SCOPUS:85163101295
SN - 2640-3498
VL - 162
SP - 18888
EP - 18909
JO - Proceedings of Machine Learning Research
JF - Proceedings of Machine Learning Research
T2 - 39th International Conference on Machine Learning, ICML 2022
Y2 - 17 July 2022 through 23 July 2022
ER -