TY - JOUR
T1 - Grünbaum's inequality for sections
AU - Myroshnychenko, S.
AU - Stephen, M.
AU - Zhang, N.
N1 - Publisher Copyright:
© 2018 Elsevier Inc.
PY - 2018/11/1
Y1 - 2018/11/1
N2 - We show [Formula presented]≥([Formula presented])[Formula presented] for all k-dimensional subspaces E⊂Rn, θ∈E∩Sn−1, and all γ-concave functions f:Rn→[0,∞) with γ>0, 0<∫Rn f(x)dx<∞ and ∫Rn xf(x)dx at the origin o∈Rn. Here, θ+:={x:〈x,θ〉≥0}. As a consequence of this result, we get the following generalization of Grünbaum's inequality: [Formula presented]≥([Formula presented])k for all convex bodies K⊂Rn with centroid at the origin, k-dimensional subspaces E⊂Rn, and θ∈E∩Sn−1. The lower bounds in both of our inequalities are the best possible, and we discuss the equality conditions.
AB - We show [Formula presented]≥([Formula presented])[Formula presented] for all k-dimensional subspaces E⊂Rn, θ∈E∩Sn−1, and all γ-concave functions f:Rn→[0,∞) with γ>0, 0<∫Rn f(x)dx<∞ and ∫Rn xf(x)dx at the origin o∈Rn. Here, θ+:={x:〈x,θ〉≥0}. As a consequence of this result, we get the following generalization of Grünbaum's inequality: [Formula presented]≥([Formula presented])k for all convex bodies K⊂Rn with centroid at the origin, k-dimensional subspaces E⊂Rn, and θ∈E∩Sn−1. The lower bounds in both of our inequalities are the best possible, and we discuss the equality conditions.
KW - Centroid
KW - Convex Bodies
KW - Grünbaum's inequality
KW - Sections
UR - http://www.scopus.com/inward/record.url?scp=85045098277&partnerID=8YFLogxK
U2 - 10.1016/j.jfa.2018.04.001
DO - 10.1016/j.jfa.2018.04.001
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85045098277
SN - 0022-1236
VL - 275
SP - 2516
EP - 2537
JO - Journal of Functional Analysis
JF - Journal of Functional Analysis
IS - 9
ER -