TY - JOUR
T1 - GPI- and transmembrane-anchored influenza hemagglutinin differ in structure and receptor binding activity
AU - Kemble, George W.
AU - Henis, Yoav I.
AU - White, Judith M.
PY - 1993/9
Y1 - 1993/9
N2 - We investigated the influence of a glycosylphosphatidylinositol (GPI) anchor on the ectodomain of the influenza hemagglutinin (HA) by replacing the wild type (wt) transmembrane and cytoplasmic domains with a GPI lipid anchor. GPI-anchored HA (GPI-HA) was transported to the cell surface with equal efficiency and at the same rate as wt-HA. Like wt-HA, cell surface GPI-HA, and its ectodomain released with the enzyme PI-phospholipase C (PI-PLC), were 9S trimers. Compared to wt-HA, the GPI-HA ectodomain underwent additional terminal oligosaccharide modifications; some of these occurred near the receptor binding pocket and completely inhibited the ability of GPI-HA to bind erythrocytes. Growth of GPI-HA-expressing cells in the presence of the mannosidase I inhibitor deoxymannojirimycin (dMM) abrogated the differences in carbohydrate modification and restored the ability of GPI-HA to bind erythrocytes. The ectodomain of GPI-HA produced from cells grown in the presence or absence of dMM underwent characteristic low pH-induced conformational changes (it released its fusion peptides and became hydrophobic and proteinase sensitive) but at 0.2 and 0.4 pH units higher than wt-HA, respectively. These results demonstrate that although GPI-HA forms a stable trimer with characteristics of the wt, its structure is altered such that its receptor binding activity is abolished. Our results show that transmembrane and GPI-anchored forms of the same ectodomain can exhibit functionally important differences in structure at a great distance from the bilayer.
AB - We investigated the influence of a glycosylphosphatidylinositol (GPI) anchor on the ectodomain of the influenza hemagglutinin (HA) by replacing the wild type (wt) transmembrane and cytoplasmic domains with a GPI lipid anchor. GPI-anchored HA (GPI-HA) was transported to the cell surface with equal efficiency and at the same rate as wt-HA. Like wt-HA, cell surface GPI-HA, and its ectodomain released with the enzyme PI-phospholipase C (PI-PLC), were 9S trimers. Compared to wt-HA, the GPI-HA ectodomain underwent additional terminal oligosaccharide modifications; some of these occurred near the receptor binding pocket and completely inhibited the ability of GPI-HA to bind erythrocytes. Growth of GPI-HA-expressing cells in the presence of the mannosidase I inhibitor deoxymannojirimycin (dMM) abrogated the differences in carbohydrate modification and restored the ability of GPI-HA to bind erythrocytes. The ectodomain of GPI-HA produced from cells grown in the presence or absence of dMM underwent characteristic low pH-induced conformational changes (it released its fusion peptides and became hydrophobic and proteinase sensitive) but at 0.2 and 0.4 pH units higher than wt-HA, respectively. These results demonstrate that although GPI-HA forms a stable trimer with characteristics of the wt, its structure is altered such that its receptor binding activity is abolished. Our results show that transmembrane and GPI-anchored forms of the same ectodomain can exhibit functionally important differences in structure at a great distance from the bilayer.
UR - http://www.scopus.com/inward/record.url?scp=0027199871&partnerID=8YFLogxK
U2 - 10.1083/jcb.122.6.1253
DO - 10.1083/jcb.122.6.1253
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 8397215
AN - SCOPUS:0027199871
SN - 0021-9525
VL - 122
SP - 1253
EP - 1265
JO - Journal of Cell Biology
JF - Journal of Cell Biology
IS - 6
ER -