TY - JOUR
T1 - GEOMETRY OF ERROR AMPLIFICATION IN SOLVING THE PRONY SYSTEM WITH NEAR-COLLIDING NODES
AU - Akinshin, Andrey
AU - Goldman, Gil
AU - Yomdin, Yosef
N1 - Publisher Copyright:
© 2021. All Rights Reserved.
PY - 2021/1
Y1 - 2021/1
N2 - We consider a reconstruction problem for “spike-train” signals F of an a priori known form F(x) =∑dj=i ajδ (x — Xj), from their moments mk(F)= xkF(x)dx. We assume that the moments mk(F), k =0, 1,…,2d-1, are known with an absolute error not exceeding ε > 0. This problem is essentially equivalent to solving the Prony system ∑jd=1 ajxjk = mk(F),k= 0, 1,…,2d — 1. We study the “geometry of error amplification” in reconstruction of F from mk(F), in situations where the nodes x1,…,xd near-collide, i.e., form a cluster of size h 1. We show that in this case, error amplification is governed by certain algebraic varieties in the parameter space of signals F, which we call the “Prony varieties”. Based on this we produce lower and upper bounds, of the same order, on the worst case reconstruction error. In addition we derive separate lower and upper bounds on the reconstruction of the amplitudes and the nodes. Finally we discuss how to use the geometry of the Prony varieties to improve the reconstruction accuracy given additional a priori information.
AB - We consider a reconstruction problem for “spike-train” signals F of an a priori known form F(x) =∑dj=i ajδ (x — Xj), from their moments mk(F)= xkF(x)dx. We assume that the moments mk(F), k =0, 1,…,2d-1, are known with an absolute error not exceeding ε > 0. This problem is essentially equivalent to solving the Prony system ∑jd=1 ajxjk = mk(F),k= 0, 1,…,2d — 1. We study the “geometry of error amplification” in reconstruction of F from mk(F), in situations where the nodes x1,…,xd near-collide, i.e., form a cluster of size h 1. We show that in this case, error amplification is governed by certain algebraic varieties in the parameter space of signals F, which we call the “Prony varieties”. Based on this we produce lower and upper bounds, of the same order, on the worst case reconstruction error. In addition we derive separate lower and upper bounds on the reconstruction of the amplitudes and the nodes. Finally we discuss how to use the geometry of the Prony varieties to improve the reconstruction accuracy given additional a priori information.
UR - http://www.scopus.com/inward/record.url?scp=85100137264&partnerID=8YFLogxK
U2 - 10.1090/mcom/3571
DO - 10.1090/mcom/3571
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85100137264
SN - 0025-5718
VL - 90
SP - 267
EP - 302
JO - Mathematics of Computation
JF - Mathematics of Computation
IS - 327
ER -