## Abstract

The Coleman-Mandula theorem, which states that space-time and internal symmetries cannot be combined in any but a trivial way, is generalized to an arbitrarily higher spacelike dimension. Prospects for further generalizations of the theorem (spacelike representations, larger timelike dimension, infinite number of particle types) are also discussed. The original proof relied heavily on the Dirac formalism, which was not well defined mathematically at that time. The proof given here is based on the rigorous version of the Dirac formalism, based on the theory of distributions. This work also serves to demonstrate the suitability of this formalism for practical applications.

Original language | English |
---|---|

Pages (from-to) | 139-172 |

Number of pages | 34 |

Journal | Journal of Mathematical Physics |

Volume | 38 |

Issue number | 1 |

DOIs | |

State | Published - Jan 1997 |