GANHopper: Multi-hop GAN for Unsupervised Image-to-Image Translation

Wallace Lira, Johannes Merz, Daniel Ritchie, Daniel Cohen-Or, Hao Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We introduce GANHopper, an unsupervised image-to-image translation network that transforms images gradually between two domains, through multiple hops. Instead of executing translation directly, we steer the translation by requiring the network to produce in-between images that resemble weighted hybrids between images from the input domains. Our network is trained on unpaired images from the two domains only, without any in-between images. All hops are produced using a single generator along each direction. In addition to the standard cycle-consistency and adversarial losses, we introduce a new hybrid discriminator, which is trained to classify the intermediate images produced by the generator as weighted hybrids, with weights based on a predetermined hop count. We also add a smoothness term to constrain the magnitude of each hop, further regularizing the translation. Compared to previous methods, GANHopper excels at image translations involving domain-specific image features and geometric variations while also preserving non-domain-specific features such as general color schemes.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings
EditorsAndrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm
PublisherSpringer Science and Business Media Deutschland GmbH
Pages363-379
Number of pages17
ISBN (Print)9783030585730
DOIs
StatePublished - 2020
Event16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom
Duration: 23 Aug 202028 Aug 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12371 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th European Conference on Computer Vision, ECCV 2020
Country/TerritoryUnited Kingdom
CityGlasgow
Period23/08/2028/08/20

Keywords

  • Adversarial learning
  • Image translation
  • Unsupervised learning

Fingerprint

Dive into the research topics of 'GANHopper: Multi-hop GAN for Unsupervised Image-to-Image Translation'. Together they form a unique fingerprint.

Cite this