Functional xylem anatomy in root-shoot junctions of six cereal species

R. Aloni, M. Griffith

Research output: Contribution to journalArticlepeer-review


In cereals, the formation of safety zones in the root-shoot junction could protect the vessels of roots from embolism originating in the shoot. The root-shoot junction was examined both anatomically, with a light microscope, and experimentally, using a pressurized-air method, in the base of seminal and adventitious roots of maize (Zea mays L. cv. Seneca 60-II), a corngrass mutation of maize (Cg mutant), sorghum (Sorghum bicolor L. cv. Ho-Pak), winter oats (Avena sativa L. cv. Ogle), spring wheat (Triticum aestivum L. cv. Glenlea), winter wheat (T. aestivum cv. Monopol), winter barley (Hordeum vulgare L. cv. Wysor), spring rye (Secale cereale L. cv. JO-02 Finland), and winter rye (S. cereale cv. Musketeer). Two types of hydraulic architecture were found in the cereal roots: (i) a very safe root vessel system, as in winter rye, in which the vessels of the roots are separated from those of the shoots by tracheids, versus (ii) a completely unsafe system, as in corngrass, where the vessels in the root are continuous with the vessels in the shoot. The xylem anatomy of the seminal roots is generally correlated with the species-specific overall root morphology. Rye, wheat and barley, which develop four to six seminal roots, show a high degree of vascular segmentation resulting in, the formation of safe root vessels; maize, sorghum and oats, which typically develop a primary seminal root, contain unsafe vessels that are continuous through the mesocotyl and through the first node. In adventitious roots, vascular segmentation is not related to overall root morphology. Differences in the proportion of safe adventitious roots in which all the vessels end in the root-shoot junction range from 9 to 98% in the cereals studied. In the unsafe roots of these cereals, the number of vessels per root that are continuous through the junction range from 1 to 14. As significant differences in vascular segmentation of the root-shoot junction occur not only between species, but also between cultivars, we suggest that selection based on the occurrence of safety zones might be used in breeding programs designed to improve adaptation of cereals to drought and cold temperatures.

Original languageEnglish
Pages (from-to)123-129
Number of pages7
Issue number1
StatePublished - Apr 1991


  • Cereal (root-shoot junction)
  • Embolism
  • Hydraulic architecture
  • Root (seminal, adventitious)
  • Root-shoot junction
  • Xylem (hydraulic safety zone)


Dive into the research topics of 'Functional xylem anatomy in root-shoot junctions of six cereal species'. Together they form a unique fingerprint.

Cite this