Abstract
The introduction of a non-black-box simulation technique by Barak (FOCS 2001) has been a major landmark in cryptography, breaking the previous barriers of black-box impossibility. Barak's techniques were subsequently extended and have given rise to various powerful applications. We present the first non-black-box simulation technique that does not rely on Barak's technique (or on non-standard assumptions). Our technique is based on essentially different tools: it does not invoke universal arguments}, nor does it rely on collision-resistant hashing. Instead, the main ingredient we use is the impossibility of general program obfuscation (Barak et al., CRYPTO 2001). Using our technique, we construct a new resettably-sound zero-knowledge (rsZK) protocol. rsZK protocols remain sound even against cheating provers that can repeatedly reset the verifier to its initial state and random tape. Indeed, for such protocols black-box simulation is impossible. Our rsZK protocol is the first to be based solely on semi-honest oblivious transfer and does not rely on collision-resistant hashing, in addition, our protocol does not use PCP machinery. In the converse direction, we show a generic transformation from any rsZK protocol to a family of functions that cannot be obfuscated.
Original language | English |
---|---|
Article number | 6375300 |
Pages (from-to) | 223-232 |
Number of pages | 10 |
Journal | Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS |
DOIs | |
State | Published - 2012 |
Event | 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012 - New Brunswick, NJ, United States Duration: 20 Oct 2012 → 23 Oct 2012 |
Keywords
- non-black-box-simulation
- resettable-security
- zero-knowledge