TY - JOUR
T1 - From finite to countable-armed bandits
AU - Kalvit, Anand
AU - Zeevi, Assaf
N1 - Publisher Copyright:
© 2020 Neural information processing systems foundation. All rights reserved.
PY - 2020
Y1 - 2020
N2 - We consider a stochastic bandit problem with countably many arms that belong to a finite set of types, each characterized by a unique mean reward. In addition, there is a fixed distribution over types which sets the proportion of each type in the population of arms. The decision maker is oblivious to the type of any arm and to the aforementioned distribution over types, but perfectly knows the total number of types occurring in the population of arms. We propose a fully adaptive online learning algorithm that achieves O (log n) distribution-dependent expected cumulative regret after any number of plays n, and show that this order of regret is best possible. The analysis of our algorithm relies on newly discovered concentration and convergence properties of optimism-based policies like UCB in finite-armed bandit problems with zero gap, which may be of independent interest.
AB - We consider a stochastic bandit problem with countably many arms that belong to a finite set of types, each characterized by a unique mean reward. In addition, there is a fixed distribution over types which sets the proportion of each type in the population of arms. The decision maker is oblivious to the type of any arm and to the aforementioned distribution over types, but perfectly knows the total number of types occurring in the population of arms. We propose a fully adaptive online learning algorithm that achieves O (log n) distribution-dependent expected cumulative regret after any number of plays n, and show that this order of regret is best possible. The analysis of our algorithm relies on newly discovered concentration and convergence properties of optimism-based policies like UCB in finite-armed bandit problems with zero gap, which may be of independent interest.
UR - http://www.scopus.com/inward/record.url?scp=85108316209&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.conferencearticle???
AN - SCOPUS:85108316209
SN - 1049-5258
VL - 2020-December
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 34th Conference on Neural Information Processing Systems, NeurIPS 2020
Y2 - 6 December 2020 through 12 December 2020
ER -