TY - JOUR
T1 - Fracture modes in brittle coatings with large interlayer modulus mismatch
AU - Chai, Herzl
AU - Lawn, Brian
AU - Wuttiphan, Sataporn
N1 - Funding Information:
We are grateful to Do Kyung Kim and Antonia Pajares for experimental assistance. This work was supported by NIST internal funds and an NIDR grant (PO1 DE10976).
PY - 1999/9
Y1 - 1999/9
N2 - Fracture modes in a model glass-polymer coating-substrate system indented with hard spheres are investigated. The large modulus mismatch between the glass and polymer results in distinctive transverse fracture modes within the brittle coating: exaggerated circumferential (C) ring cracks that initiate at the upper coating surface well outside the contact (as opposed to the near-contact Hertzian cone fractures observed in monolithic brittle materials); median-radial (M) cracks that initiate at the lower surface (i.e., at the substrate interface) on median planes containing the contact axis. Bonding between the coating and substrate is sufficiently strong as to preclude delamination in our system. The transparency of the constituent materials usefully enables in situ identification and quantification of the two transverse fracture modes during contact. The morphologies of the cracks and the corresponding critical indentation loads for initiation are measured over a broad range of coating thicknesses (20 μm to 5.6 mm), on coatings with like surface flaw states, here ensured by a prebonding abrasion treatment. There is a well-defined, broad intermediate range where the indented coating responds more like a flexing plate than a Hertzian contact, and where the M and C cracks initiate in close correspondence with a simple critical stress criterion, i.e., when the maximum tensile stresses exceed the bulk strength of the (abraded) glass. In this intermediate range the M cracks generally form first - only when the flaws on the lower surface are removed (by etching) do the C cracks form first. Finite element modeling is used to evaluate the critical stresses at crack initiation and the surface locations of the crack origins. Departures from the critical stress condition occur at the extremes of very thick coatings (monolith limit) and very thin coatings (thin-film limit), where stress gradients over the flaw dimension are large. Implications of the results concerning practical coating systems are considered.
AB - Fracture modes in a model glass-polymer coating-substrate system indented with hard spheres are investigated. The large modulus mismatch between the glass and polymer results in distinctive transverse fracture modes within the brittle coating: exaggerated circumferential (C) ring cracks that initiate at the upper coating surface well outside the contact (as opposed to the near-contact Hertzian cone fractures observed in monolithic brittle materials); median-radial (M) cracks that initiate at the lower surface (i.e., at the substrate interface) on median planes containing the contact axis. Bonding between the coating and substrate is sufficiently strong as to preclude delamination in our system. The transparency of the constituent materials usefully enables in situ identification and quantification of the two transverse fracture modes during contact. The morphologies of the cracks and the corresponding critical indentation loads for initiation are measured over a broad range of coating thicknesses (20 μm to 5.6 mm), on coatings with like surface flaw states, here ensured by a prebonding abrasion treatment. There is a well-defined, broad intermediate range where the indented coating responds more like a flexing plate than a Hertzian contact, and where the M and C cracks initiate in close correspondence with a simple critical stress criterion, i.e., when the maximum tensile stresses exceed the bulk strength of the (abraded) glass. In this intermediate range the M cracks generally form first - only when the flaws on the lower surface are removed (by etching) do the C cracks form first. Finite element modeling is used to evaluate the critical stresses at crack initiation and the surface locations of the crack origins. Departures from the critical stress condition occur at the extremes of very thick coatings (monolith limit) and very thin coatings (thin-film limit), where stress gradients over the flaw dimension are large. Implications of the results concerning practical coating systems are considered.
UR - http://www.scopus.com/inward/record.url?scp=0032595445&partnerID=8YFLogxK
U2 - 10.1557/JMR.1999.0514
DO - 10.1557/JMR.1999.0514
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0032595445
SN - 0884-2914
VL - 14
SP - 3805
EP - 3817
JO - Journal of Materials Research
JF - Journal of Materials Research
IS - 9
ER -