Following curved regularized optimization solution paths

Saharon Rosset*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Regularization plays a central role in the analysis of modern data, where non-regularized fitting is likely to lead to over-fitted models, useless for both prediction and interpretation. We consider the design of incremental algorithms which follow paths of regularized solutions, as the regularization varies. These approaches often result in methods which are both efficient and highly flexible. We suggest a general path-following algorithm based on second-order approximations, prove that under mild conditions it remains "very close" to the path of optimal solutions and illustrate it with examples.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 17 - Proceedings of the 2004 Conference, NIPS 2004
PublisherNeural information processing systems foundation
ISBN (Print)0262195348, 9780262195348
StatePublished - 2005
Externally publishedYes
Event18th Annual Conference on Neural Information Processing Systems, NIPS 2004 - Vancouver, BC, Canada
Duration: 13 Dec 200416 Dec 2004

Publication series

NameAdvances in Neural Information Processing Systems
ISSN (Print)1049-5258

Conference

Conference18th Annual Conference on Neural Information Processing Systems, NIPS 2004
Country/TerritoryCanada
CityVancouver, BC
Period13/12/0416/12/04

Cite this