First ground-based observations of mesopause temperatures above the Eastern-Mediterranean Part I: Multi-day oscillations and tides

Israel Silber*, Colin Price, Carsten Schmidt, Sabine Wüst, Michael Bittner, Emilio Pecora

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

The mesopause region (~90 km altitude) is the coldest region of our atmosphere, and is found at the boundary between the upper mesosphere and lower thermosphere. Ground-based spectrometers, which are sensitive to the emissions from the hydroxyl (OH*) airglow layer (lying at ~87 km altitude), are used to monitor the temperature variability within the mesosphere-lower-thermosphere (MLT), at high temporal resolution. The variability of the MLT region of the atmosphere is driven by momentum deposition from gravity waves, atmospheric tides and planetary waves. The displacement of air caused by these waves can produce strong temperature, wind and species concentration perturbations. In this study we present an analysis of 4-years of OH* rotational temperature data, acquired with the German Aerospace Center (DLR) GRIPS-10 (Ground Based Infrared P-branch Spectrometer) instrument, which was installed in Israel in November 2011. This instrument provided the first long-term ground-based observations of airglow emissions in the Eastern Mediterranean. We show the nocturnal mean temperature analysis, which includes time series as well as spectral analysis of the data. In addition, we obtain (migrating) tidal oscillation estimates from the high resolution (1 min) data, by using harmonic fitting, and we analyze the variability of planetary wave signatures in the residual temperature data, which are retrieved after the removal of the tidal harmonic fits from the data. In this analysis of the residual data we find a dominant quasi-5–7 day planetary wave influence on the mesopause temperatures above the Eastern Mediterranean.

Original languageEnglish
Pages (from-to)95-103
Number of pages9
JournalJournal of Atmospheric and Solar-Terrestrial Physics
Volume155
DOIs
StatePublished - 1 Mar 2017

Funding

FundersFunder number
World Data Center for Remote Sensing of the Atmosphere
Ministry of Science and Technology, Israel

    Keywords

    • Airglow
    • Atmospheric tides
    • Mesopause temperatures
    • Planetary waves

    Fingerprint

    Dive into the research topics of 'First ground-based observations of mesopause temperatures above the Eastern-Mediterranean Part I: Multi-day oscillations and tides'. Together they form a unique fingerprint.

    Cite this