TY - JOUR

T1 - Finite-band solitons in the Kronig-Penney model with the cubic-quintic nonlinearity

AU - Merhasin, Ilya M.

AU - Gisin, Boris V.

AU - Driben, Rodislav

AU - Malomed, Boris A.

PY - 2005/1

Y1 - 2005/1

N2 - We present a model combining a periodic array of rectangular potential wells [the Kronig-Penney (KP) potential] and the cubic-quintic (CQ) nonlinearity. A plethora of soliton states is found in the system: fundamental single-humped solitons, symmetric and antisymmetric double-humped ones, three-peak solitons with and without the phase shift π between the peaks, etc. If the potential profile is shallow, the solitons belong to the semi-infinite gap beneath the band structure of the linear KP model, while finite gaps between the Bloch bands remain empty. However, in contrast with the situation known in the model combining a periodic potential and the self-focusing Kerr nonlinearity, the solitons fill only a finite zone near the top of the semiinfinite gap, which is a consequence of the saturable character of the CQ nonlinearity. If the potential structure is much deeper, then fundamental and double (both symmetric and antisymmetric) solitons with a flat-top shape are found in the finite gaps. Computation of stability eigenvalues for small perturbations and direct simulations show that all the solitons are stable. In the shallow KP potential, the soliton characteristics, in the form of the integral power Q (or width w) versus the propagation constant k, reveal strong bistability, with two and, sometimes, four different solutions found for a given k (the bistability disappears with the increase of the depth of the potential). Disobeying the Vakhitov-Kolokolov criterion, the solution branches with both dQ/dk>0 and dQ/dk<0 aie stable. The curve Q(k) corresponding to each particular type of the solution (with a given number of local peaks and definite symmetry) ends at a finite maximum value of Q (breathers are found past the end points). The increase of the integral power gives rise to additional peaks in the soliton's shape, each corresponding to a subpulse trapped in a local channel of the KP structure (a beam-splitting property). It is plausible that these features are shared by other models combining saturable nonlinearity and a periodic substrate.

AB - We present a model combining a periodic array of rectangular potential wells [the Kronig-Penney (KP) potential] and the cubic-quintic (CQ) nonlinearity. A plethora of soliton states is found in the system: fundamental single-humped solitons, symmetric and antisymmetric double-humped ones, three-peak solitons with and without the phase shift π between the peaks, etc. If the potential profile is shallow, the solitons belong to the semi-infinite gap beneath the band structure of the linear KP model, while finite gaps between the Bloch bands remain empty. However, in contrast with the situation known in the model combining a periodic potential and the self-focusing Kerr nonlinearity, the solitons fill only a finite zone near the top of the semiinfinite gap, which is a consequence of the saturable character of the CQ nonlinearity. If the potential structure is much deeper, then fundamental and double (both symmetric and antisymmetric) solitons with a flat-top shape are found in the finite gaps. Computation of stability eigenvalues for small perturbations and direct simulations show that all the solitons are stable. In the shallow KP potential, the soliton characteristics, in the form of the integral power Q (or width w) versus the propagation constant k, reveal strong bistability, with two and, sometimes, four different solutions found for a given k (the bistability disappears with the increase of the depth of the potential). Disobeying the Vakhitov-Kolokolov criterion, the solution branches with both dQ/dk>0 and dQ/dk<0 aie stable. The curve Q(k) corresponding to each particular type of the solution (with a given number of local peaks and definite symmetry) ends at a finite maximum value of Q (breathers are found past the end points). The increase of the integral power gives rise to additional peaks in the soliton's shape, each corresponding to a subpulse trapped in a local channel of the KP structure (a beam-splitting property). It is plausible that these features are shared by other models combining saturable nonlinearity and a periodic substrate.

UR - http://www.scopus.com/inward/record.url?scp=41349109266&partnerID=8YFLogxK

U2 - 10.1103/PhysRevE.71.016613

DO - 10.1103/PhysRevE.71.016613

M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???

C2 - 15697753

AN - SCOPUS:41349109266

SN - 1539-3755

VL - 71

JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

IS - 1

M1 - 016613

ER -