TY - JOUR
T1 - Female fertility preservation
T2 - Past, present and future
AU - Fisch, Benjamin
AU - Abir, Ronit
N1 - Publisher Copyright:
© 2018 Society for Reproduction and Fertility.
PY - 2018
Y1 - 2018
N2 - Anti-cancer therapy, particularly chemotherapy, damages ovarian follicles and promotes ovarian failure. The only pharmacological means for protecting the ovaries from chemotherapy-induced injury is gonadotrophin-releasing hormone agonist, but its efficiency remains controversial; ovarian transposition is used to shield the ovary from radiation when indicated. Until the late 1990s, the only option for fertility preservation and restoration in women with cancer was embryo cryopreservation. The development of other assisted reproductive technologies such as mature oocyte cryopreservation and in vitro maturation of oocytes has contributed to fertility preservation. Treatment regimens to obtain mature oocytes/embryos have been modified to overcome various limitations of conventional ovarian stimulation protocols. In the last decades, several centres have begun cryopreserving ovarian samples containing primordial follicles from young patients before anti-cancer therapy. The first live birth following implantation of cryopreserved-thawed ovarian tissue was reported in 2004; since then, the number has risen to more than 130. Nowadays, ovarian tissue cryopreservation can be combined with in vitro maturation and vitrification of oocytes. The use of cryopreserved oocytes eliminates the risk posed by ovarian implantation of reseeding the cancer. Novel methods for enhancing follicular survival after implantation are presently being studied. In addition, researchers are currently investigating agents for ovarian protection. It is expected that the risk of reimplantation of malignant cells with ovarian grafts will be overcome with the putative development of an artificial ovary and an efficient follicle class- and species-dependent in vitro system for culturing primordial follicles.
AB - Anti-cancer therapy, particularly chemotherapy, damages ovarian follicles and promotes ovarian failure. The only pharmacological means for protecting the ovaries from chemotherapy-induced injury is gonadotrophin-releasing hormone agonist, but its efficiency remains controversial; ovarian transposition is used to shield the ovary from radiation when indicated. Until the late 1990s, the only option for fertility preservation and restoration in women with cancer was embryo cryopreservation. The development of other assisted reproductive technologies such as mature oocyte cryopreservation and in vitro maturation of oocytes has contributed to fertility preservation. Treatment regimens to obtain mature oocytes/embryos have been modified to overcome various limitations of conventional ovarian stimulation protocols. In the last decades, several centres have begun cryopreserving ovarian samples containing primordial follicles from young patients before anti-cancer therapy. The first live birth following implantation of cryopreserved-thawed ovarian tissue was reported in 2004; since then, the number has risen to more than 130. Nowadays, ovarian tissue cryopreservation can be combined with in vitro maturation and vitrification of oocytes. The use of cryopreserved oocytes eliminates the risk posed by ovarian implantation of reseeding the cancer. Novel methods for enhancing follicular survival after implantation are presently being studied. In addition, researchers are currently investigating agents for ovarian protection. It is expected that the risk of reimplantation of malignant cells with ovarian grafts will be overcome with the putative development of an artificial ovary and an efficient follicle class- and species-dependent in vitro system for culturing primordial follicles.
UR - http://www.scopus.com/inward/record.url?scp=85049384835&partnerID=8YFLogxK
U2 - 10.1530/REP-17-0483
DO - 10.1530/REP-17-0483
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
AN - SCOPUS:85049384835
SN - 1470-1626
VL - 156
SP - F11-F27
JO - Reproduction
JF - Reproduction
IS - 1
ER -