Fast reference based MRI

L. Weizman, Y. C. Eldar, A. Eilam, S. Londner, M. Artzi, D. Ben Bashat

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In many clinical MRI scenarios, existing imaging information can be used to significantly shorten acquisition time or improve Signal to Noise Ratio (SNR). In those cases, a previously acquired image can serve as a reference image, that may exhibit similarity in some sense to the image being acquired. Examples include similarity between adjacent slices in high resolution MRI, similarity between various contrasts in the same scans and similarity between different scans of the same patients. In this paper we present a general framework for utilizing reference images for fast MRI. We take into account that the reference image may exhibit low similarity with the acquired image and develop a hybrid adaptive-weighted approach for sampling and reconstruction. Experiments demonstrate the performance of the method in three different clinical MRI scenarios: SNR improvement in high resolution brain MRI, utilizing similarity between T2-weighted and fluid-attenuated inversion recovery (FLAIR) for fast FLAIR scanning and utilizing similarity between baseline and follow-up scans for fast follow-up scanning.

Original languageEnglish
Title of host publication2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7486-7489
Number of pages4
ISBN (Electronic)9781424492718
DOIs
StatePublished - 4 Nov 2015
Externally publishedYes
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: 25 Aug 201529 Aug 2015

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2015-November
ISSN (Print)1557-170X

Conference

Conference37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
Country/TerritoryItaly
CityMilan
Period25/08/1529/08/15

Keywords

  • Brain
  • Compressive sensing and sampling
  • Magnetic resonance imaging (MRI)

Fingerprint

Dive into the research topics of 'Fast reference based MRI'. Together they form a unique fingerprint.

Cite this