Abstract
A minimum distance decoding algorithm for non-binary first order Reed-Muller codes is described. Suggested decoding is based on a generalization of the fast Hadamard transform to the non-binary case. We also propose a fast decoding algorithm for non-binary first order Reed-Muller codes with complexity proportional to the length of the code. This algorithm provides decoding within the limits guaranteed by the minimum distance of the code.
Original language | English |
---|---|
Pages (from-to) | 299-308 |
Number of pages | 10 |
Journal | Applicable Algebra in Engineering, Communications and Computing |
Volume | 7 |
Issue number | 4 |
DOIs | |
State | Published - 1996 |
Keywords
- Fast decoding algorithms
- Reed-Muller codes