Extremely noncommutative elements in rings

Howard E. Bell*, Abraham A. Klein

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

We study rings and K-algebras in which all elements or all noncentral elements have smallest possible centralizer. Our principal result asserts that a ring R must be either finite or commutative if each noncentral element a has centralizer equal to the subring generated by a.

Original languageEnglish
Pages (from-to)19-24
Number of pages6
JournalMonatshefte fur Mathematik
Volume153
Issue number1
DOIs
StatePublished - Jan 2008

Funding

FundersFunder number
Natural Sciences and Engineering Research Council of Canada3961

    Keywords

    • Centralizer
    • Extremely noncommutative element
    • Indecomposable ring
    • Peirce decomposition
    • Periodic ring
    • Potent element

    Fingerprint

    Dive into the research topics of 'Extremely noncommutative elements in rings'. Together they form a unique fingerprint.

    Cite this