TY - JOUR
T1 - Extremal Kähler–Einstein Metric for Two-Dimensional Convex Bodies
AU - Klartag, Bo’az
AU - Kolesnikov, Alexander V.
N1 - Publisher Copyright:
© 2018, Mathematica Josephina, Inc.
PY - 2019/7/15
Y1 - 2019/7/15
N2 - Given a convex body K⊂ Rn with the barycenter at the origin, we consider the corresponding Kähler–Einstein equation e- Φ= det D2Φ. If K is a simplex, then the Ricci tensor of the Hessian metric D2Φ is constant and equals n-14(n+1). We conjecture that the Ricci tensor of D2Φ for an arbitrary convex body K⊆ Rn is uniformly bounded from above by n-14(n+1) and we verify this conjecture in the two-dimensional case. The general case remains open.
AB - Given a convex body K⊂ Rn with the barycenter at the origin, we consider the corresponding Kähler–Einstein equation e- Φ= det D2Φ. If K is a simplex, then the Ricci tensor of the Hessian metric D2Φ is constant and equals n-14(n+1). We conjecture that the Ricci tensor of D2Φ for an arbitrary convex body K⊆ Rn is uniformly bounded from above by n-14(n+1) and we verify this conjecture in the two-dimensional case. The general case remains open.
KW - Kähler–Einstein equation
KW - Monge–Ampère equation
KW - Ricci tensors
UR - http://www.scopus.com/inward/record.url?scp=85052690544&partnerID=8YFLogxK
U2 - 10.1007/s12220-018-0077-4
DO - 10.1007/s12220-018-0077-4
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85052690544
SN - 1050-6926
VL - 29
SP - 2347
EP - 2373
JO - Journal of Geometric Analysis
JF - Journal of Geometric Analysis
IS - 3
ER -