Extractors for Images of Varieties

Zeyu Guo, Ben Lee Volk, Akhil Jalan, David Zuckerman

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We construct explicit deterministic extractors for polynomial images of varieties, that is, distributions sampled by applying a low-degree polynomial map f : Fqr → Fqn to an element sampled uniformly at random from a k-dimensional variety V † Fqr. This class of sources generalizes both polynomial sources, studied by Dvir, Gabizon and Wigderson (FOCS 2007, Comput. Complex. 2009), and variety sources, studied by Dvir (CCC 2009, Comput. Complex. 2012). Assuming certain natural non-degeneracy conditions on the map f and the variety V, which in particular ensure that the source has enough min-entropy, we extract almost all the min-entropy of the distribution. Unlike the Dvir-Gabizon-Wigderson and Dvir results, our construction works over large enough finite fields of arbitrary characteristic. One key part of our construction is an improved deterministic rank extractor for varieties. As a by-product, we obtain explicit Noether normalization lemmas for affine varieties and affine algebras. Additionally, we generalize a construction of affine extractors with exponentially small error due to Bourgain, Dvir and Leeman (Comput. Complex. 2016) by extending it to all finite prime fields of quasipolynomial size.

Original languageEnglish
Title of host publicationSTOC 2023 - Proceedings of the 55th Annual ACM Symposium on Theory of Computing
EditorsBarna Saha, Rocco A. Servedio
PublisherAssociation for Computing Machinery
Pages46-59
Number of pages14
ISBN (Electronic)9781450399135
DOIs
StatePublished - 2 Jun 2023
Externally publishedYes
Event55th Annual ACM Symposium on Theory of Computing, STOC 2023 - Orlando, United States
Duration: 20 Jun 202323 Jun 2023

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Conference

Conference55th Annual ACM Symposium on Theory of Computing, STOC 2023
Country/TerritoryUnited States
CityOrlando
Period20/06/2323/06/23

Keywords

  • Extractors
  • Polynomial Maps
  • Pseudorandomness
  • Varieties

Fingerprint

Dive into the research topics of 'Extractors for Images of Varieties'. Together they form a unique fingerprint.

Cite this