TY - JOUR
T1 - Extended Picard complexes for algebraic groups and homogeneous spaces
AU - Borovoi, Mikhail
AU - van Hamel, Joost
N1 - Funding Information:
E-mail addresses: [email protected] (M. Borovoi), [email protected] (J. van Hamel). 1 Partially supported by the Hermann Minkowski Center for Geometry.
PY - 2006/5/1
Y1 - 2006/5/1
N2 - For a smooth geometrically integral algebraic variety X over a field k of characteristic 0, we define the extended Picard complex UPic ( over(X, ̄) ). It is a complex of length 2 which combines the Picard group Pic ( over(X, ̄) ) and the group U ( over(X, ̄) ) : = over(k, ̄) [ over(X, ̄) ]× / over(k, ̄)×, where over(k, ̄) is a fixed algebraic closure of k and over(X, ̄) = X ×k over(k, ̄). For a connected linear k-group G we compute the complex UPic ( over(G, ̄) ) (up to a quasi-isomorphism) in terms of the algebraic fundamental group π1 ( over(G, ̄) ). We obtain similar results for a homogeneous space X of a connected k-group G. To cite this article: M. Borovoi, J. van Hamel, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
AB - For a smooth geometrically integral algebraic variety X over a field k of characteristic 0, we define the extended Picard complex UPic ( over(X, ̄) ). It is a complex of length 2 which combines the Picard group Pic ( over(X, ̄) ) and the group U ( over(X, ̄) ) : = over(k, ̄) [ over(X, ̄) ]× / over(k, ̄)×, where over(k, ̄) is a fixed algebraic closure of k and over(X, ̄) = X ×k over(k, ̄). For a connected linear k-group G we compute the complex UPic ( over(G, ̄) ) (up to a quasi-isomorphism) in terms of the algebraic fundamental group π1 ( over(G, ̄) ). We obtain similar results for a homogeneous space X of a connected k-group G. To cite this article: M. Borovoi, J. van Hamel, C. R. Acad. Sci. Paris, Ser. I 342 (2006).
UR - http://www.scopus.com/inward/record.url?scp=33645956544&partnerID=8YFLogxK
U2 - 10.1016/j.crma.2006.02.030
DO - 10.1016/j.crma.2006.02.030
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:33645956544
SN - 1631-073X
VL - 342
SP - 671
EP - 674
JO - Comptes Rendus Mathematique
JF - Comptes Rendus Mathematique
IS - 9
ER -