Expression and modulation of voltage-gated calcium channels after RNA injection in Xenopus oocytes

Nathan Dascal, Terry P. Snutch, Hermann Lübbert, Norman Davidson, Henry A. Lester*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

129 Scopus citations

Abstract

Calcium ions flow into cells through several distinct classes of voltage-dependent calcium-selective channels. Such fluxes play important roles in electrical signaling at the cell membrane and in chemical signaling within cells. Further information about calcium channels was obtained by injecting RNA isolated from rat brain, heart, and skeletal muscle into Xenopus oocytes. Macroscopic currents through voltage-operated calcium channels were resolved when the endogenous calcium-dependent chloride current was blocked by replacing external calcium with barium and chloride with methanesulfbnate. The resulting barium current was insensitive to tetrodotoxin but was completely blocked by cadmium or cobalt. With both heart and brain RNA at least two distinct types of calcium ion conductance were found, distinguishable by their time course and inactivation properties. In oocytes injected with heart RNA, the slowly inactivating component was selectively blocked by the calcium-channel antagonist nifedipine. Barium ion currents induced by heart RNA were modulated by isoproterenol, cyclic adenosine monophosphate, and acetylcholine.

Original languageEnglish
Pages (from-to)1147-1150
Number of pages4
JournalScience
Volume231
Issue number4742
DOIs
StatePublished - 7 Mar 1986
Externally publishedYes

Funding

FundersFunder number
National Institute of General Medical SciencesR01GM029836
National Institute of General Medical Sciences

    Fingerprint

    Dive into the research topics of 'Expression and modulation of voltage-gated calcium channels after RNA injection in Xenopus oocytes'. Together they form a unique fingerprint.

    Cite this