TY - JOUR
T1 - Exponential sums over primes in short intervals
AU - Huang, Bingrong
AU - Wang, Zhiwei
N1 - Publisher Copyright:
© 2014 Elsevier Inc..
PY - 2015/3/1
Y1 - 2015/3/1
N2 - Let A(n) be the von Mangoldt function, x real and 2 ≤ y ≤ x. This paper improves the estimate on the exponential sum over primes in short intervals. Sk(x,y;α)=∑xkα) when k≥ 4 for all α ∈ [0, 1]. And then combined with the Hardy-Littlewood method, this enables us to give some short interval variants of Hua's theorems in additive prime number theory.
AB - Let A(n) be the von Mangoldt function, x real and 2 ≤ y ≤ x. This paper improves the estimate on the exponential sum over primes in short intervals. Sk(x,y;α)=∑xkα) when k≥ 4 for all α ∈ [0, 1]. And then combined with the Hardy-Littlewood method, this enables us to give some short interval variants of Hua's theorems in additive prime number theory.
KW - Exponential sums
KW - Short intervals
KW - Von Mangoldt function
UR - http://www.scopus.com/inward/record.url?scp=84909594686&partnerID=8YFLogxK
U2 - 10.1016/j.jnt.2014.09.004
DO - 10.1016/j.jnt.2014.09.004
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84909594686
SN - 0022-314X
VL - 148
SP - 204
EP - 219
JO - Journal of Number Theory
JF - Journal of Number Theory
ER -