Exponential source/channel duality

Sergey Tridenski, Ram Zamir

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

We propose a source/channel duality in the exponential regime, where success/failure in source coding parallels error/correctness in channel coding, and a distortion constraint becomes a log-likelihood ratio (LLR) threshold. We establish this duality by first deriving exact exponents for lossy coding of a memoryless source P, at distortion D, for a general i.i.d. codebook distribution Q, for both encoding success (R < R(P, Q, D)) and failure (R > R(P, Q, D)). We then turn to maximum likelihood (ML) decoding over a memoryless channel P with an i.i.d. input Q, and show that if we substitute P = QP, Q = Q, and D = 0 under the LLR distortion measure, then the exact exponents for decoding-error (R < I(Q, P)) and strict correct-decoding (R > I(Q, P)) follow as special cases of the exponents for source encoding success/failure, respectively. Moreover, by letting the threshold D take general values, the exact random-coding exponents for erasure (D > 0) and list decoding (D < 0) under the simplified Forney decoder are obtained. Finally, we derive the exact random-coding exponent for Forney's optimum tradeoff erasure/list decoder, and show that at the erasure regime it coincides with Forney's lower bound and with the simplified decoder exponent, settling a long standing conjecture.

Original languageEnglish
Title of host publication2017 IEEE International Symposium on Information Theory, ISIT 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3140-3144
Number of pages5
ISBN (Electronic)9781509040964
DOIs
StatePublished - 9 Aug 2017
Event2017 IEEE International Symposium on Information Theory, ISIT 2017 - Aachen, Germany
Duration: 25 Jun 201730 Jun 2017

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Conference

Conference2017 IEEE International Symposium on Information Theory, ISIT 2017
Country/TerritoryGermany
CityAachen
Period25/06/1730/06/17

Funding

FundersFunder number
Israel Academy of Sciences and Humanities676/15

    Keywords

    • Correct-decoding exponent
    • Erasure/list decoding
    • Random coding exponents
    • Source coding exponents

    Fingerprint

    Dive into the research topics of 'Exponential source/channel duality'. Together they form a unique fingerprint.

    Cite this