Exploiting similarity in adjacent slices for compressed sensing MRI

Lior Weizman, Ohad Rahamim, Roey Dekel, Yonina C. Eldar, Dafna Ben-Bashat

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Due to fundamental characteristics of MRI that limit scan speedup, sub-sampling techniques such as compressed sensing (CS) have been developed for rapid MRI. Current CS MRI approaches utilize sparsity of the image in the wavelet or other transform domains to speed-up acquisition. Another drawback of MRI is its poor signal-to-noise ratio (SNR), which is proportional to the image slice thickness. In this paper, we use the difference between adjacent slices as the sparse domain for CS MRI. We propose to acquire thick MRI slices and to reconstruct the thin slices from the thick slices' data, utilizing the similarity between adjacent thin slices. The acquisition of thick slices, instead of thin ones, improves the total SNR of the reconstructed image. Experimental results show that the image reconstruction quality of the proposed method outperforms existing CS MRI methods using the same number of measurements.

Original languageEnglish
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1549-1552
Number of pages4
ISBN (Electronic)9781424479290
DOIs
StatePublished - 2 Nov 2014
Externally publishedYes
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: 26 Aug 201430 Aug 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Conference

Conference2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Country/TerritoryUnited States
CityChicago
Period26/08/1430/08/14

Fingerprint

Dive into the research topics of 'Exploiting similarity in adjacent slices for compressed sensing MRI'. Together they form a unique fingerprint.

Cite this