Explicit Subcodes of Reed-Solomon Codes that Efficiently Achieve List Decoding Capacity

Amit Berman, Yaron Shany, Itzhak Tamo

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this paper, we introduce a novel explicit family of subcodes of Reed-Solomon (RS) codes that efficiently achieve list decoding capacity with a constant output list size. Our approach builds upon the idea of large linear subcodes of RS codes evaluated on a subfield, similar to the method employed by Guruswami and Xing (STOC 2013). However, our approach diverges by leveraging the idea of permuted product codes, thereby simplifying the construction by avoiding the need of subspace designs. Specifically, the codes are constructed by initially forming the tensor product of two RS codes with carefully selected evaluation sets, followed by specific cyclic shifts to the codeword rows. This process results in each codeword column being treated as an individual coordinate, reminiscent of prior capacity-achieving codes, such as folded RS codes and univariate multiplicity codes. This construction is easily shown to be a subcode of an interleaved RS code, equivalently, an RS code evaluated on a subfield.11Due to space limitation the proofs are omitted and can be found in [1].

Original languageEnglish
Title of host publication2024 IEEE International Symposium on Information Theory, ISIT 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3564-3569
Number of pages6
ISBN (Electronic)9798350382846
DOIs
StatePublished - 2024
Event2024 IEEE International Symposium on Information Theory, ISIT 2024 - Athens, Greece
Duration: 7 Jul 202412 Jul 2024

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Conference

Conference2024 IEEE International Symposium on Information Theory, ISIT 2024
Country/TerritoryGreece
CityAthens
Period7/07/2412/07/24

Fingerprint

Dive into the research topics of 'Explicit Subcodes of Reed-Solomon Codes that Efficiently Achieve List Decoding Capacity'. Together they form a unique fingerprint.

Cite this