Explicit multivariate approximations from cell-average data

Sergio Amat, David Levin, Juan Ruiz-Álvarez, Dionisio F. Yáñez*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Given gridded cell-average data of a smooth multivariate function, we present a constructive explicit procedure for generating a high-order global approximation of the function. One contribution is the derivation of high-order approximations to point-values of the function directly from the cell-average data. The second contribution is the development of univariate B-spline-based high-order quasi-interpolation operators using cell-average data. Multivariate spline quasi-interpolation approximation operators are obtained by tensor product of the univariate operators.

Original languageEnglish
Article number85
JournalAdvances in Computational Mathematics
Volume48
Issue number6
DOIs
StatePublished - Dec 2022

Funding

FundersFunder number
Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de MurciaPID2019-108336GB-I00
Generalitat ValencianaMCIN/AEI/10.13039/501100011033, CIAICO/2021/227, PID2020-117211GB-I00
Comunidad Autónoma de la Región de Murcia

    Keywords

    • Cell-average data
    • Explicit approximation
    • Multivariate
    • Quasi-interpolation
    • Splines

    Fingerprint

    Dive into the research topics of 'Explicit multivariate approximations from cell-average data'. Together they form a unique fingerprint.

    Cite this