TY - JOUR
T1 - Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolutional Neural Networks
AU - Tschandl, Philipp
AU - Rosendahl, Cliff
AU - Akay, Bengu Nisa
AU - Argenziano, Giuseppe
AU - Blum, Andreas
AU - Braun, Ralph P.
AU - Cabo, Horacio
AU - Gourhant, Jean Yves
AU - Kreusch, Jürgen
AU - Lallas, Aimilios
AU - Lapins, Jan
AU - Marghoob, Ashfaq
AU - Menzies, Scott
AU - Neuber, Nina Maria
AU - Paoli, John
AU - Rabinovitz, Harold S.
AU - Rinner, Christoph
AU - Scope, Alon
AU - Soyer, H. Peter
AU - Sinz, Christoph
AU - Thomas, Luc
AU - Zalaudek, Iris
AU - Kittler, Harald
N1 - Publisher Copyright:
© 2018 American Medical Association. All rights reserved.
PY - 2019/1
Y1 - 2019/1
N2 - Importance: Convolutional neural networks (CNNs) achieve expert-level accuracy in the diagnosis of pigmented melanocytic lesions. However, the most common types of skin cancer are nonpigmented and nonmelanocytic, and are more difficult to diagnose. Objective: To compare the accuracy of a CNN-based classifier with that of physicians with different levels of experience. Design, Setting, and Participants: A CNN-based classification model was trained on 7895 dermoscopic and 5829 close-up images of lesions excised at a primary skin cancer clinic between January 1, 2008, and July 13, 2017, for a combined evaluation of both imaging methods. The combined CNN (cCNN) was tested on a set of 2072 unknown cases and compared with results from 95 human raters who were medical personnel, including 62 board-certified dermatologists, with different experience in dermoscopy. Main Outcomes and Measures: The proportions of correct specific diagnoses and the accuracy to differentiate between benign and malignant lesions measured as an area under the receiver operating characteristic curve served as main outcome measures. Results: Among 95 human raters (51.6% female; mean age, 43.4 years; 95% CI, 41.0-45.7 years), the participants were divided into 3 groups (according to years of experience with dermoscopy): beginner raters (<3 years), intermediate raters (3-10 years), or expert raters (>10 years). The area under the receiver operating characteristic curve of the trained cCNN was higher than human ratings (0.742; 95% CI, 0.729-0.755 vs 0.695; 95% CI, 0.676-0.713; P <.001). The specificity was fixed at the mean level of human raters (51.3%), and therefore the sensitivity of the cCNN (80.5%; 95% CI, 79.0%-82.1%) was higher than that of human raters (77.6%; 95% CI, 74.7%-80.5%). The cCNN achieved a higher percentage of correct specific diagnoses compared with human raters (37.6%; 95% CI, 36.6%-38.4% vs 33.5%; 95% CI, 31.5%-35.6%; P =.001) but not compared with experts (37.3%; 95% CI, 35.7%-38.8% vs 40.0%; 95% CI, 37.0%-43.0%; P =.18). Conclusions and Relevance: Neural networks are able to classify dermoscopic and close-up images of nonpigmented lesions as accurately as human experts in an experimental setting.
AB - Importance: Convolutional neural networks (CNNs) achieve expert-level accuracy in the diagnosis of pigmented melanocytic lesions. However, the most common types of skin cancer are nonpigmented and nonmelanocytic, and are more difficult to diagnose. Objective: To compare the accuracy of a CNN-based classifier with that of physicians with different levels of experience. Design, Setting, and Participants: A CNN-based classification model was trained on 7895 dermoscopic and 5829 close-up images of lesions excised at a primary skin cancer clinic between January 1, 2008, and July 13, 2017, for a combined evaluation of both imaging methods. The combined CNN (cCNN) was tested on a set of 2072 unknown cases and compared with results from 95 human raters who were medical personnel, including 62 board-certified dermatologists, with different experience in dermoscopy. Main Outcomes and Measures: The proportions of correct specific diagnoses and the accuracy to differentiate between benign and malignant lesions measured as an area under the receiver operating characteristic curve served as main outcome measures. Results: Among 95 human raters (51.6% female; mean age, 43.4 years; 95% CI, 41.0-45.7 years), the participants were divided into 3 groups (according to years of experience with dermoscopy): beginner raters (<3 years), intermediate raters (3-10 years), or expert raters (>10 years). The area under the receiver operating characteristic curve of the trained cCNN was higher than human ratings (0.742; 95% CI, 0.729-0.755 vs 0.695; 95% CI, 0.676-0.713; P <.001). The specificity was fixed at the mean level of human raters (51.3%), and therefore the sensitivity of the cCNN (80.5%; 95% CI, 79.0%-82.1%) was higher than that of human raters (77.6%; 95% CI, 74.7%-80.5%). The cCNN achieved a higher percentage of correct specific diagnoses compared with human raters (37.6%; 95% CI, 36.6%-38.4% vs 33.5%; 95% CI, 31.5%-35.6%; P =.001) but not compared with experts (37.3%; 95% CI, 35.7%-38.8% vs 40.0%; 95% CI, 37.0%-43.0%; P =.18). Conclusions and Relevance: Neural networks are able to classify dermoscopic and close-up images of nonpigmented lesions as accurately as human experts in an experimental setting.
UR - http://www.scopus.com/inward/record.url?scp=85057833474&partnerID=8YFLogxK
U2 - 10.1001/jamadermatol.2018.4378
DO - 10.1001/jamadermatol.2018.4378
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 30484822
AN - SCOPUS:85057833474
SN - 2168-6068
VL - 155
SP - 58
EP - 65
JO - JAMA Dermatology
JF - JAMA Dermatology
IS - 1
ER -