Experimental and multiphase analysis of nanofluids on the conjugate performance of micro-channel at low Reynolds numbers

Rajesh Nimmagadda, K. Venkatasubbaiah*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


The present study investigates the laminar forced convection flow of single walled carbon nanotube (SWCNT), gold (Au), aluminum oxide (Al2O3), silver (Ag) and hybrid (Al2O3 + Ag) nanofluids (HyNF) in a wide rectangular micro-channel at low Reynolds numbers. The heat transfer characteristics of de-ionized (DI) water and SWCNT nanofluid with different nanoparticle volume concentrations have been experimental studied. Furthermore, numerical study has also been carried out to investigate the flow and heat transfer characteristics of DI water, SWCNT, Au, Al2O3, Ag and HyNF at different Reynolds numbers with different nanoparticle volume concentrations and particle diameters. The numerical study consider the effects of both inertial and viscous forces by solving the full Navier-Stokes equations at low Reynolds numbers. A two dimensional conjugate heat transfer multiphase mixture model has been developed and used for numerical study. A significant enhancement in the average Nusselt number is observed both experimentally and numerically for nanofluids. The study presents four optimized combinations of nanofluids (1 vol% SWCNT and 1 vol% Au with dp = 50 nm), (2 vol% SWCNT and 3 vol% Au with dp = 70 nm), (3 vol% Al2O3 and 2 vol% Au with dp = 70 nm) as well as (3 vol% HyNF (2.4% Al2O3 + 0.6% Ag) and 3 vol% Au with dp = 50 nm) that provides a better switching option in choosing efficient working fluid with minimum cost based on cooling requirement. The conduction phenomenon of the solid region at bottom of the micro-channel is considered in the present investigation. This phenomenon shows that the interface temperature between solid and fluid region increases along the length of the channel. The present results has been validated with the experimental and numerical results available in the literature.

Original languageEnglish
Pages (from-to)2099-2115
Number of pages17
JournalHeat and Mass Transfer
Issue number6
StatePublished - 1 Jun 2017
Externally publishedYes


Dive into the research topics of 'Experimental and multiphase analysis of nanofluids on the conjugate performance of micro-channel at low Reynolds numbers'. Together they form a unique fingerprint.

Cite this