TY - JOUR
T1 - Exogenous ceramide-1-phosphate (C1P) and phospho-ceramide analogue-1 (PCERA-1) regulate key macrophage activities via distinct receptors
AU - Katz, Sebastián
AU - Ernst, Orna
AU - Avni, Dorit
AU - Athamna, Muhammad
AU - Philosoph, Amir
AU - Arana, Lide
AU - Ouro, Alberto
AU - Hoeferlin, L. Alexis
AU - Meijler, Michael M.
AU - Chalfant, Charles E.
AU - Gómez-Muñoz, Antonio
AU - Zor, Tsaffrir
N1 - Publisher Copyright:
© 2015 Elsevier B.V.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Inflammation is an ensemble of tightly regulated steps, in which macrophages play an essential role. Previous reports showed that the natural sphingolipid ceramide 1-phosphate (C1P) stimulates macrophages migration, while the synthetic C1P mimic, phospho-ceramide analogue-1 (PCERA-1), suppresses production of the key pro-inflammatory cytokine TNFα and amplifies production of the key anti-inflammatory cytokine IL-10 in LPS-stimulated macrophages, via one or more unidentified G-protein coupled receptors. We show that C1P stimulated RAW264.7 macrophages migration via the NFκB pathway and MCP-1 induction, while PCERA-1 neither mimicked nor antagonized these activities. Conversely, PCERA-1 synergistically elevated LPS-dependent IL-10 expression in RAW264.7 macrophages via the cAMP-PKA-CREB signaling pathway, while C1P neither mimicked nor antagonized these activities. Interestingly, both compounds have the capacity to additively inhibit TNFα secretion; PCERA-1, but not C1P, suppressed LPS-induced TNFα expression in macrophages in a CREB-dependent manner, while C1P, but not PCERA-1, directly inhibited recombinant TNFα converting enzyme (TACE). Finally, PCERA-1 failed to interfere with binding of C1P to either the cell surface receptor or to TACE. These results thus indicate that the natural sphingolipid C1P and its synthetic analog PCERA-1 bind and activate distinct receptors expressed in RAW264.7 macrophages. Identification of these receptors will be instrumental for elucidation of novel activities of extra-cellular sphingolipids, and may pave the way for the design of new sphingolipid mimics for the treatment of inflammatory diseases, and pathologies which depend on cell migration, as in metastatic tumors.
AB - Inflammation is an ensemble of tightly regulated steps, in which macrophages play an essential role. Previous reports showed that the natural sphingolipid ceramide 1-phosphate (C1P) stimulates macrophages migration, while the synthetic C1P mimic, phospho-ceramide analogue-1 (PCERA-1), suppresses production of the key pro-inflammatory cytokine TNFα and amplifies production of the key anti-inflammatory cytokine IL-10 in LPS-stimulated macrophages, via one or more unidentified G-protein coupled receptors. We show that C1P stimulated RAW264.7 macrophages migration via the NFκB pathway and MCP-1 induction, while PCERA-1 neither mimicked nor antagonized these activities. Conversely, PCERA-1 synergistically elevated LPS-dependent IL-10 expression in RAW264.7 macrophages via the cAMP-PKA-CREB signaling pathway, while C1P neither mimicked nor antagonized these activities. Interestingly, both compounds have the capacity to additively inhibit TNFα secretion; PCERA-1, but not C1P, suppressed LPS-induced TNFα expression in macrophages in a CREB-dependent manner, while C1P, but not PCERA-1, directly inhibited recombinant TNFα converting enzyme (TACE). Finally, PCERA-1 failed to interfere with binding of C1P to either the cell surface receptor or to TACE. These results thus indicate that the natural sphingolipid C1P and its synthetic analog PCERA-1 bind and activate distinct receptors expressed in RAW264.7 macrophages. Identification of these receptors will be instrumental for elucidation of novel activities of extra-cellular sphingolipids, and may pave the way for the design of new sphingolipid mimics for the treatment of inflammatory diseases, and pathologies which depend on cell migration, as in metastatic tumors.
KW - C1P
KW - IL-10
KW - Inflammation
KW - Macrophages
KW - Migration
KW - TNFα
UR - http://www.scopus.com/inward/record.url?scp=84949921792&partnerID=8YFLogxK
U2 - 10.1016/j.imlet.2015.12.001
DO - 10.1016/j.imlet.2015.12.001
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84949921792
SN - 0165-2478
VL - 169
SP - 73
EP - 81
JO - Immunology Letters
JF - Immunology Letters
ER -