TY - JOUR
T1 - Existence of Equivariant Models of Spherical Varieties and Other G-varieties
AU - Borovoi, Mikhail
AU - Gagliardi, Giuliano
N1 - Publisher Copyright:
© The Author(s) 2021. Published by Oxford University Press. All rights reserved.
PY - 2022/10/1
Y1 - 2022/10/1
N2 - Let k0 be a field of characteristic 0 with algebraic closure k. Let G be a connected reductive k-group, and let Y be a spherical variety over k (a spherical homogeneous space or a spherical embedding). Let G0 be a k0-model (k0-form) of G. We give necessary and sufficient conditions for the existence of a G0-equivariant k0-model of Y.
AB - Let k0 be a field of characteristic 0 with algebraic closure k. Let G be a connected reductive k-group, and let Y be a spherical variety over k (a spherical homogeneous space or a spherical embedding). Let G0 be a k0-model (k0-form) of G. We give necessary and sufficient conditions for the existence of a G0-equivariant k0-model of Y.
UR - http://www.scopus.com/inward/record.url?scp=85157964415&partnerID=8YFLogxK
U2 - 10.1093/imrn/rnab102
DO - 10.1093/imrn/rnab102
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85157964415
SN - 1073-7928
VL - 2022
SP - 15932
EP - 16034
JO - International Mathematics Research Notices
JF - International Mathematics Research Notices
IS - 20
ER -