TY - JOUR
T1 - Excited-State Proton Transfer from the Photoacid 2-Naphthol-8-sulfonate to Acetonitrile/Water Mixtures
AU - Gajst, Oren
AU - Pinto Da Silva, Luís
AU - Esteves Da Silva, Joaquim C.G.
AU - Huppert, Dan
N1 - Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/8/2
Y1 - 2018/8/2
N2 - Steady-state and time-resolved fluorescence techniques were used to study excited-state proton transfer (ESPT) to water of the reversible photoacid 2-naphthol-8-sulfonate (2N8S) in acetonitrile/water mixtures. In acetonitrile-rich mixtures, up to χwater ≤ 0.12, we found a slow ESPT process on the order of nanoseconds. At χwater ≈ 0.15, the RO- fluorescence band intensity is at the minimum, whereas at χwater ≈ 0.030, it is at the maximum. The steady-state fluorescence spectra of these mixtures show that the intensity of the RO- fluorescence band at χwater ≈ 0.030 is about 0.24 of that of the ROH band. We explain this unusual phenomenon by the presence of water clusters that exist in the acetonitrile-rich CH3CN/H2O mixtures. We propose that a water bridge forms between the 2-OH and 8-sulfonate by preferential solvation of 2N8S, and this enables the ESPT process between the two sites of the molecular structure of 2N8S. In mixtures of χwater ≥ 0.25, the ESPT process takes place to water clusters in the bulk mixture. The higher the χwater in the mixture, the greater the ESPT rate constant. In neat water, the rate constant is rather small, 4.5 × 109 s-1. TD-DFT calculations show that a single water molecule can bridge between 2-OH and 8-sulfonate in the excited state. The activation energy for the ESPT reaction is about 9 kcal/mol, and the RO-(S1) species is energetically above the ROH(S1) species by about 1.6 kcal/mol.
AB - Steady-state and time-resolved fluorescence techniques were used to study excited-state proton transfer (ESPT) to water of the reversible photoacid 2-naphthol-8-sulfonate (2N8S) in acetonitrile/water mixtures. In acetonitrile-rich mixtures, up to χwater ≤ 0.12, we found a slow ESPT process on the order of nanoseconds. At χwater ≈ 0.15, the RO- fluorescence band intensity is at the minimum, whereas at χwater ≈ 0.030, it is at the maximum. The steady-state fluorescence spectra of these mixtures show that the intensity of the RO- fluorescence band at χwater ≈ 0.030 is about 0.24 of that of the ROH band. We explain this unusual phenomenon by the presence of water clusters that exist in the acetonitrile-rich CH3CN/H2O mixtures. We propose that a water bridge forms between the 2-OH and 8-sulfonate by preferential solvation of 2N8S, and this enables the ESPT process between the two sites of the molecular structure of 2N8S. In mixtures of χwater ≥ 0.25, the ESPT process takes place to water clusters in the bulk mixture. The higher the χwater in the mixture, the greater the ESPT rate constant. In neat water, the rate constant is rather small, 4.5 × 109 s-1. TD-DFT calculations show that a single water molecule can bridge between 2-OH and 8-sulfonate in the excited state. The activation energy for the ESPT reaction is about 9 kcal/mol, and the RO-(S1) species is energetically above the ROH(S1) species by about 1.6 kcal/mol.
UR - http://www.scopus.com/inward/record.url?scp=85049738091&partnerID=8YFLogxK
U2 - 10.1021/acs.jpca.8b04417
DO - 10.1021/acs.jpca.8b04417
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85049738091
SN - 1089-5639
VL - 122
SP - 6166
EP - 6175
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 30
ER -